請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58896完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張雅雯(Ya-Wen Chang) | |
| dc.contributor.author | Chia-Hsuan Chan | en |
| dc.contributor.author | 詹佳璇 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:37:23Z | - |
| dc.date.available | 2014-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-10-18 | |
| dc.identifier.citation | Adaskaveg, J., R. Gilbertson and R. Blanchette (1990). 'Comparative studies of delignification caused by Ganoderma species.' Applied and environmental microbiology 56(6): 1932.
Alvers, A. L., L. K. Fishwick, M. S. Wood, D. Hu, H. S. Chung, W. A. Dunn Jr and J. P. Aris (2009). 'Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae.' Aging cell 8(4): 353-369. Ashrafi, K., D. Sinclair, J. I. Gordon and L. Guarente (1999). 'Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae.' Proceedings of the National Academy of Sciences 96(16): 9100-9105. Atwood, C. S. and R. L. Bowen (2011). 'The reproductive-cell cycle theory of aging: an update.' Experimental gerontology 46(2): 100-107. Beckhouse, A. G., C. M. Grant, P. J. Rogers, I. W. Dawes and V. J. Higgins (2008). 'The adaptive response of anaerobically grown Saccharomyces cerevisiae to hydrogen peroxide is mediated by the Yap1 and Skn7 transcription factors.' FEMS yeast research 8(8): 1214-1222. Birch, R. M. and G. M. Walker (2000). 'Influence of magnesium ions on heat shock and ethanol stress responses of< i> Saccharomyces cerevisiae</i>.' Enzyme and Microbial Technology 26(9): 678-687. Bjedov, I., J. M. Toivonen, F. Kerr, C. Slack, J. Jacobson, A. Foley and L. Partridge (2010). 'Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly< i> Drosophila melanogaster</i>.' Cell metabolism 11(1): 35-46. Burtner, C. R., C. J. Murakami, B. K. Kennedy and M. Kaeberlein (2009). 'A molecular mechanism of chronological aging in yeast.' Cell cycle 8(8): 1256-1270. Burtner, C. R., C. J. Murakami, B. Olsen, B. K. Kennedy and M. Kaeberlein (2011). 'A genomic analysis of chronological longevity factors in budding yeast.' Cell cycle 10(9): 1385-1396. Camougrand, N., A. Grelaud‐Coq, E. Marza, M. Priault, J. J. Bessoule and S. Manon (2003). 'The product of the UTH1 gene, required for Bax‐induced cell death in yeast, is involved in the response to rapamycin.' Molecular microbiology 47(2): 495-506. Camougrand, N., I. Kiššova, G. Velours and S. Manon (2004). 'Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death.' FEMS yeast research 5(2): 133-140. Chen, I.-T., A. Dixit, D. D. Rhoads and D. J. Roufa (1986). 'Homologous ribosomal proteins in bacteria, yeast, and humans.' Proceedings of the National Academy of Sciences 83(18): 6907-6911. Devasagayam, T., J. Tilak, K. Boloor, K. Sane, S. Ghaskadbi and R. Lele (2004). 'Free radicals and antioxidants in human health: current status and future prospects.' Japi 52: 794-804. Egilmez, N. K. and S. M. Jazwinski (1989). 'Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae.' Journal of bacteriology 171(1): 37-42. El Dine, R. S., A. M. El Halawany, C.-M. Ma and M. Hattori (2008). 'Anti-HIV-1 protease activity of lanostane triterpenes from the vietnamese mushroom Ganoderma colossum.' Journal of natural products 71(6): 1022-1026. Fabrizio, P., L.-L. Liou, V. N. Moy, A. Diaspro, J. S. Valentine, E. B. Gralla and V. D. Longo (2003). 'SOD2 functions downstream of Sch9 to extend longevity in yeast.' Genetics 163(1): 35-46. Fabrizio, P. and V. D. Longo (2003). 'The chronological life span of Saccharomyces cerevisiae.' Aging cell 2(2): 73-81. Fabrizio, P. and V. D. Longo (2007). The chronological life span of Saccharomyces cerevisiae. Biological Aging, Springer: 89-95. Finkel, T., C.-X. Deng and R. Mostoslavsky (2009). 'Recent progress in the biology and physiology of sirtuins.' Nature 460(7255): 587-591. Gensler, H. L. and H. Bernstein (1981). 'DNA damage as the primary cause of aging.' Quarterly Review of Biology: 279-303. Halliwell, B. and M. Whiteman (2004). 'Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?' British journal of pharmacology 142(2): 231-255. Hallsworth, J. E., Y. Nomura and M. Iwahara (1998). 'Ethanol-induced water stress and fungal growth.' Journal of fermentation and bioengineering 86(5): 451-456. Harman, D. (1981). 'The aging process.' Proceedings of the National Academy of Sciences 78(11): 7124-7128. Harrison, D. E., R. Strong, Z. D. Sharp, J. F. Nelson, C. M. Astle, K. Flurkey, N. L. Nadon, J. E. Wilkinson, K. Frenkel and C. S. Carter (2009). 'Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.' nature 460(7253): 392-395. Herrero, E., J. Ros, G. Belli and E. Cabiscol (2008). 'Redox control and oxidative stress in yeast cells.' Biochimica et Biophysica Acta (BBA)-General Subjects 1780(11): 1217-1235. Howitz, K. T., K. J. Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu, J. G. Wood, R. E. Zipkin, P. Chung, A. Kisielewski and L.-L. Zhang (2003). 'Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.' Nature 425(6954): 191-196. Ignoul, S. and J. Eggermont (2005). 'CBS domains: structure, function, and pathology in human proteins.' American Journal of Physiology-Cell Physiology 289(6): C1369-C1378. Johnston, M., L. Hillier, L. Riles, K. Albermann, B. Andre, W. Ansorge, V. Benes, M. Bruckner, H. Delius and E. Dubois (1997). 'The nucleotide sequence of Saccharomyces cerevisiae chromosome XII.' Nature 387(6632): 87-90. Kaeberlein, M. (2010). 'Lessons on longevity from budding yeast.' Nature 464(7288): 513-519. Kaeberlein, M., K. T. Kirkland, S. Fields and B. K. Kennedy (2004). 'Sir2-independent life span extension by calorie restriction in yeast.' PLoS biology 2(9): e296. Kaeberlein, M., M. McVey and L. Guarente (1999). 'The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms.' Genes & development 13(19): 2570-2580. Kaeberlein, M., R. W. Powers, K. K. Steffen, E. A. Westman, D. Hu, N. Dang, E. O. Kerr, K. T. Kirkland, S. Fields and B. K. Kennedy (2005). 'Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients.' Science 310(5751): 1193-1196. Kamada, Y., T. Funakoshi, T. Shintani, K. Nagano, M. Ohsumi and Y. Ohsumi (2000). 'Tor-mediated induction of autophagy via an Apg1 protein kinase complex.' The Journal of cell biology 150(6): 1507-1513. Kampkotter, A., C. G. Nkwonkam, R. F. Zurawski, C. Timpel, Y. Chovolou, W. Watjen and R. Kahl (2007). 'Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism< i> Caenorhabditis elegans</i>.' Toxicology 234(1): 113-123. Kaneto, H., Y. Kajimoto, J.-i. Miyagawa, T.-a. Matsuoka, Y. Fujitani, Y. Umayahara, T. Hanafusa, Y. Matsuzawa, Y. Yamasaki and M. Hori (1999). 'Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity.' Diabetes 48(12): 2398-2406. Kennedy, B., K. Steffen and M. Kaeberlein (2007). 'Ruminations on dietary restriction and aging.' Cellular and molecular life sciences 64(11): 1323-1328. Kennedy, B. K., M. Gotta, D. A. Sinclair, K. Mills, D. S. McNabb, M. Murthy, S. M. Pak, T. Laroche, S. M. Gasser and L. Guarente (1997). 'Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae.' Cell 89(3): 381-391. Koc, A., A. P. Gasch, J. C. Rutherford, H.-Y. Kim and V. N. Gladyshev (2004). 'Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and-independent components of aging.' Proceedings of the National Academy of Sciences of the United States of America 101(21): 7999-8004. Lai, L.-C., A. L. Kosorukoff, P. V. Burke and K. E. Kwast (2006). 'Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae.' Eukaryotic Cell 5(9): 1468-1489. Lakowski, B. and S. Hekimi (1998). 'The genetics of caloric restriction in Caenorhabditis elegans.' Proceedings of the National Academy of Sciences 95(22): 13091-13096. Leāo, C. and N. Van Uden (1982). 'Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae.' Biotechnology and bioengineering 24(11): 2601-2604. Lin, S.-J., P.-A. Defossez and L. Guarente (2000). 'Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.' Science 289(5487): 2126-2128. Longo, V. D., G. S. Shadel, M. Kaeberlein and B. Kennedy (2012). 'Replicative and Chronological Aging in Saccharomyces cerevisiae.' Cell metabolism 16(1): 18-31. Lucero, P., E. Penalver, E. Moreno and R. Lagunas (2000). 'Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae.' Applied and environmental microbiology 66(10): 4456-4461. Madeo, F., T. Eisenberg, S. Buttner, C. Ruckenstuhl and G. Kroemer (2010). 'Spermidine: a novel autophagy inducer and longevity elixir.' Autophagy 6(1): 160-162. Mauricio, J. and J. Salmon (1992). 'Apparent loss of sugar transport activity inSaccharomyces cerevisiae may mainly account for maximum ethanol production during alcoholic fermentation.' Biotechnology letters 14(7): 577-582. McCay, C., M. F. Crowell and L. Maynard (1935). 'The effect of retarded growth upon the length of life span and upon the ultimate body size.' J Nutr 10(1): 63-79. Minamino, T. and I. Komuro (2008). 'Role of telomeres in vascular senescence.' Frontiers in bioscience: a journal and virtual library 13: 2971. Murakami, C., J. R. Delaney, A. Chou, D. Carr, J. Schleit, G. L. Sutphin, E. H. An, A. S. Castanza, M. Fletcher and S. Goswami (2012). 'pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast.' Cell Cycle 11(16): 3087-3096. Murakami, C. J., C. R. Burtner, B. K. Kennedy and M. Kaeberlein (2008). 'A method for high-throughput quantitative analysis of yeast chronological life span.' The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 63(2): 113-121. Ofodile, L., N. Uma, T. Kokubun, R. Grayer, O. Ogundipe and M. Simmonds (2005). 'Antimicrobial activity of some Ganoderma species from Nigeria.' Phytotherapy Research 19(4): 310-313. Orentreich, N., J. R. Matias, A. DeFelice and J. A. Zimmerman (1993). 'Low methionine ingestion by rats extends life span.' The Journal of nutrition 123(2): 269-274. Parkes, T. L., A. J. Elia, D. Dickinson, A. J. Hilliker, J. P. Phillips and G. L. Boulianne (1998). 'Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons.' Nature genetics 19(2): 171-174. Partridge, L., M. D. Piper and W. Mair (2005). 'Dietary restriction in< i> Drosophila</i>.' Mechanisms of ageing and development 126(9): 938-950. Pegg, D. E. (2007). Principles of cryopreservation. Cryopreservation and Freeze-Drying Protocols, Springer: 39-57. Plesset, J., C. Palm and C. McLaughlin (1982). 'Induction of heat shock proteins and thermotolerance by ethanol in Saccharomycescerevisiae.' Biochemical and biophysical research communications 108(3): 1340-1345. Polymenis, M. and B. K. Kennedy (2012). 'Chronological and replicative lifespan in yeast: Do they meet in the middle?' Cell Cycle 11(19): 3531-3531. Powers, T. and P. Walter (1999). 'Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae.' Molecular biology of the cell 10(4): 987-1000. Riesen, M. and A. Morgan (2009). 'Calorie restriction reduces rDNA recombination independently of rDNA silencing.' Aging Cell 8(6): 624-632. Rogina, B. and S. L. Helfand (2004). 'Sir2 mediates longevity in the fly through a pathway related to calorie restriction.' Proceedings of the National Academy of Sciences of the United States of America 101(45): 15998-16003. Schmelzle, T. and M. N. Hall (2000). 'TOR, a central controller of cell growth.' Cell 103(2): 253-262. Schmidt, A., J. Kunz and M. N. Hall (1996). 'TOR2 is required for organization of the actin cytoskeleton in yeast.' Proceedings of the National Academy of Sciences 93(24): 13780-13785. Science, E. (1991). Aging, Sex, and DNA Repair, Academic Press. Shcheprova, Z., S. Baldi, S. B. Frei, G. Gonnet and Y. Barral (2008). 'A mechanism for asymmetric segregation of age during yeast budding.' Nature 454(7205): 728-734. Shinjo, K., J. G. Koland, M. J. Hart, V. Narasimhan, D. I. Johnson, T. Evans and R. A. Cerione (1990). 'Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42.' Proceedings of the National Academy of Sciences of the United States of America 87(24): 9853. Sinclair, D. A. and L. Guarente (1997). 'Extrachromosomal rDNA circles—a cause of aging in yeast.' Cell 91(7): 1033-1042. Smith, E. D., M. Tsuchiya, L. A. Fox, N. Dang, D. Hu, E. O. Kerr, E. D. Johnston, B. N. Tchao, D. N. Pak and K. L. Welton (2008). 'Quantitative evidence for conserved longevity pathways between divergent eukaryotic species.' Genome research 18(4): 564-570. Stanfel, M. N., L. S. Shamieh, M. Kaeberlein and B. K. Kennedy (2009). 'The TOR pathway comes of age.' Biochimica et Biophysica Acta (BBA)-General Subjects 1790(10): 1067-1074. Steinkraus, K., M. Kaeberlein and B. Kennedy (2008). 'Replicative aging in yeast: the means to the end.' Annual review of cell and developmental biology 24: 29. Sudheesh, N., T. Ajith, V. Ramnath and K. Janardhanan (2010). 'Therapeutic potential of Ganoderma lucidum P. Karst. against the declined antioxidant status in the mitochondria of post-mitotic tissues of aged mice.' Clinical Nutrition 29(3): 406-412. Sun, K., L. Xiang, S. Ishihara, A. Matsuura, Y. Sakagami and J. Qi (2012). 'Anti-aging effects of hesperidin on Saccharomyces cerevisiae via inhibition of reactive oxygen species and UTH1 gene expression.' Biosci. Biotechnol. Biochem 76(4): 640-645. Tissenbaum, H. A. and L. Guarente (2001). 'Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans.' Nature 410(6825): 227-230. Urban, J., A. Soulard, A. Huber, S. Lippman, D. Mukhopadhyay, O. Deloche, V. Wanke, D. Anrather, G. Ammerer and H. Riezman (2007). 'Sch9 Is a Major Target of TORC1 in< i> Saccharomyces cerevisiae</i>.' Molecular cell 26(5): 663-674. Valenzano, D. R., E. Terzibasi, T. Genade, A. Cattaneo, L. Domenici and A. Cellerino (2006). 'Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate.' Current Biology 16(3): 296-300. Vellai, T., K. Takacs-Vellai, Y. Zhang, A. L. Kovacs, L. Orosz and F. Muller (2003). 'Influence of TOR kinase on lifespan in C. elegans.' Nature 426(620): 10.1038. Viswanathan, M., S. K. Kim, A. Berdichevsky and L. Guarente (2005). 'A Role for SIR-2.1 Regulation of ER Stress Response Genes in Determining< i> C</i>.< i> elegans</i> Life Span.' Developmental cell 9(5): 605-615. Wang, X., X. Wang, L. Li and D. Wang (2010). 'Lifespan extension in< i> Caenorhabditis elegans</i> by DMSO is dependent on< i> sir-2.1</i> and< i> daf-16</i>.' Biochemical and biophysical research communications 400(4): 613-618. Weng, C.-J., P.-S. Fang, D.-H. Chen, K.-D. Chen and G.-C. Yen (2010). 'Anti-invasive effect of a rare mushroom, Ganoderma colossum, on human hepatoma cells.' Journal of agricultural and food chemistry 58(13): 7657-7663. Weng, Y., J. Lu, L. Xiang, A. Matsuura, Y. Zhang, Q. Huang and J. Qi (2011). 'Ganodermasides C and D, two new anti-aging ergosterols from spores of the medicinal mushroom Ganoderma lucidum.' Bioscience, biotechnology, and biochemistry 75(4): 800-803. Weng, Y., L. Xiang, A. Matsuura, Y. Zhang, Q. Huang and J. Qi (2010). 'Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene.' Bioorganic & medicinal chemistry 18(3): 999-1002. Williams, N. (1996). 'Yeast genome sequence ferments new research.' Science 272(5261): 481. Wood, J. G., B. Rogina, S. Lavu, K. Howitz, S. L. Helfand, M. Tatar and D. Sinclair (2004). 'Sirtuin activators mimic caloric restriction and delay ageing in metazoans.' Nature 430(7000): 686-689. Wu, Z., S. Q. Liu and D. Huang (2013). 'Dietary Restriction Depends on Nutrient Composition to Extend Chronological Lifespan in Budding Yeast Saccharomyces cerevisiae.' PloS one 8(5): e64448. Wullschleger, S., R. Loewith and M. N. Hall (2006). 'TOR signaling in growth and metabolism.' Cell 124(3): 471-484. Xiang, L., K. Sun, J. Lu, Y. Weng, A. Taoka, Y. Sakagami and J. Qi (2011). 'Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes.' Bioscience, biotechnology, and biochemistry 75(5): 854-858. Yen, G.-C. and J.-Y. Wu (1999). 'Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae.' Food Chemistry 65(3): 375-379. Zheng, X.-F. and S. L. Schreiber (1997). 'Target of rapamycin proteins and their kinase activities are required for meiosis.' Proceedings of the National Academy of Sciences 94(7): 3070-3075. Brown, G. D. and S. Gordon (2005). 'Immune recognition of fungal β‐glucans.' Cellular microbiology 7(4): 471-479. Busscher, H., B. Van de Belt-Gritter and H. Van der Mei (1995). 'Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potentials of hydrocarbon droplets.' Colloids and surfaces B: Biointerfaces 5(3): 111-116. Byron, J. K., K. V. Clemons, J. H. McCusker, R. W. Davis and D. A. Stevens (1995). 'Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice.' Infect Immun 63(2): 478-485. Calderone, R., S. Suzuki, R. Cannon, T. Cho, D. Boyd, J. Calera, H. Chibana, D. Herman, A. Holmes and H. Jeng (2000). 'Candida albicans: adherence, signaling and virulence.' Medical Mycology 38(s1): 125-137. Chaffin, W. L., J. L. Lopez-Ribot, M. Casanova, D. Gozalbo and J. P. Martinez (1998). 'Cell wall and secreted proteins ofCandida albicans: identification, function, and expression.' Microbiology and molecular biology reviews 62(1): 130-180. Chen, I.-T., A. Dixit, D. D. Rhoads and D. J. Roufa (1986). 'Homologous ribosomal proteins in bacteria, yeast, and humans.' Proceedings of the National Academy of Sciences 83(18): 6907-6911. Clemons, K. V., J. H. McCusker, R. W. Davis and D. A. Stevens (1994). 'Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae.' Journal of Infectious Diseases 169(4): 859-867. Cutler, J. E. (1991). 'Putative virulence factors of Candida albicans.' Annual Reviews in Microbiology 45(1): 187-218. De Hoog, G. (1995). 'Risk assessment of fungi reported from humans and animals.' Mycoses 39(11-12): 407-417. Douglas, L. J. (2003). '< i> Candida</i> biofilms and their role in infection.' Trends in microbiology 11(1): 30-36. Duran, A. and C. Nombela (2004). 'Fungal cell wall biogenesis: building a dynamic interface with the environment.' Microbiology 150(10): 3099-3103. Frohner, I. E., C. Bourgeois, K. Yatsyk, O. Majer and K. Kuchler (2009). 'Candida albicans cell surface superoxide dismutases degrade host‐derived reactive oxygen species to escape innate immune surveillance.' Molecular microbiology 71(1): 240-252. Garcia-Sanchez, S., S. Aubert, I. Iraqui, G. Janbon, J.-M. Ghigo and C. d'Enfert (2004). 'Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns.' Eukaryotic cell 3(2): 536-545. Glee, P. M., P. Sundstrom and K. C. Hazen (1995). 'Expression of surface hydrophobic proteins by Candida albicans in vivo.' Infection and immunity 63(4): 1373-1379. Hazen, K. C. (1989). 'Participation of yeast cell surface hydrophobicity in adherence of Candida albicans to human epithelial cells.' Infection and immunity 57(7): 1894-1900. Heilmann, C. J., A. G. Sorgo and F. M. Klis (2012). 'News from the Fungal Front: Wall Proteome Dynamics and Host–Pathogen Interplay.' PLoS pathogens 8(12): e1003050. Heilmann, C. J., A. G. Sorgo, A. R. Siliakus, H. L. Dekker, S. Brul, C. G. de Koster, L. J. de Koning and F. M. Klis (2011). 'Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile.' Microbiology 157(8): 2297-2307. Herre, J., S. Gordon and G. D. Brown (2004). 'Dectin-1 and its role in the recognition of β-glucans by macrophages.' Molecular immunology 40(12): 869-876. Hoyer, L. L., T. L. Payne, M. Bell, A. M. Myers and S. Scherer (1998). 'Candida albicans ALS3 and insights into the nature of the ALS gene family.' Current genetics 33(6): 451-459. Ignoul, S. and J. Eggermont (2005). 'CBS domains: structure, function, and pathology in human proteins.' American Journal of Physiology-Cell Physiology 289(6): C1369-C1378. Kaeberlein, M. and L. Guarente (2002). 'Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity.' Genetics 160(1): 83-95. Kamiyama, A., M. Niimi, M. Tokunaga and H. Nakayama (1989). 'Adansonian study of Candida albicans: intraspecific homogeneity excepting C. stellatoidea strains.' Medical Mycology 27(4): 229-241. Kapteyn, J., L. Hoyer, J. Hecht, W. Muller, A. Andel, A. Verkleij, M. Makarow, H. Van Den Ende and F. Klis (2000). 'The cell wall architecture of Candida albicans wild‐type cells and cell wall‐defective mutants.' Molecular microbiology 35(3): 601-611. Klis, F., P. D. Groot and K. Hellingwerf (2001). 'Molecular organization of the cell wall of Candida albicans.' Medical Mycology 39(1): 1-8. Klis, F. M. (1994). 'Review: cell wall assembly in yeast.' Yeast 10(7): 851-869. Klis, F. M., A. Boorsma and P. W. De Groot (2006). 'Cell wall construction in Saccharomyces cerevisiae.' Yeast 23(3): 185-202. Klis, F. M., P. Mol, K. Hellingwerf and S. Brul (2002). 'Dynamics of cell wall structure in Saccharomyces cerevisiae.' FEMS microbiology reviews 26(3): 239-256. Klotz, S. A., N. K. Gaur, D. F. Lake, V. Chan, J. Rauceo and P. N. Lipke (2004). 'Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p.' Infection and immunity 72(4): 2029-2034. Kojic, E. M. and R. O. Darouiche (2004). 'Candida infections of medical devices.' Clinical microbiology reviews 17(2): 255-267. Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis and E. Cabib (1997). 'Architecture of the yeast cell wall β (1→ 6)-glucan interconnects mannoprotein, β (1→ 3)-glucan, and chitin.' Journal of Biological Chemistry 272(28): 17762-17775. Kopecka, M. and M. Gabriel (1992). 'The influence of Congo red on the cell wall and (1→ 3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae.' Archives of microbiology 158(2): 115-126. Kovacs, M., I. Stuparevič, V. Mrša and A. Maraz (2008). 'Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation.' FEMS yeast research 8(7): 1115-1126. Kwon-Chung, K., I. Polacheck and T. Popkin (1982). 'Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice.' Journal of bacteriology 150(3): 1414-1421. Levin, D. E. (2011). 'Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway.' Genetics 189(4): 1145-1175. Lipke, P. N. and R. Ovalle (1998). 'Cell wall architecture in yeast: new structure and new challenges.' Journal of bacteriology 180(15): 3735-3740. Luo, G., A. S. Ibrahim, B. Spellberg, C. J. Nobile, A. P. Mitchell and Y. Fu (2010). 'Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target.' Journal of Infectious Diseases 201(11): 1718-1728. Muller, A., H. Ensley, H. Pretus, R. McNamee, E. Jones, E. McLaughlin, W. Chandley, W. Browder, D. Lowman and D. Williams (1997). 'The application of various protic acids in the extraction of (1→ 3)-β-d-glucan from< i> Saccharomyces cerevisiae</i>.' Carbohydrate research 299(3): 203-208. Ma, D., D. G. Russell, S. M. Beverley and S. J. Turco (1997). 'Golgi GDP-mannose Uptake Requires Leishmania LPG2 A MEMBER OF A EUKARYOTIC FAMILY OF PUTATIVE NUCLEOTIDE-SUGAR TRANSPORTERS.' Journal of Biological Chemistry 272(6): 3799-3805. McCusker, J. H., K. V. Clemons, D. A. Stevens and R. W. Davis (1994). 'Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae.' Infection and immunity 62(12): 5447-5455. Murphy, A. and K. Kavanagh (1999). 'Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology.' Enzyme and microbial technology 25(7): 551-557. Odds, F. C., C. E. Webster, P. Mayuranathan and P. D. Simmons (1988). 'Candida concentrations in the vagina and their association with signs and symptoms of vaginal candidosis.' J Med Vet Mycol 26(5): 277-283. Orlean, P. (1997). '3 Biogenesis of Yeast Wall and Surface Components.' Cold Spring Harbor Monograph Archive 21: 229-362. Orlean, P. (1997). 'Biogenesis of Yeast Wall and Surface Components.' Cold Spring Harbor Monograph Archive 21: 229-362. Reynolds, T. B. and G. R. Fink (2001). 'Bakers' yeast, a model for fungal biofilm formation.' Science 291(5505): 878-881. Roncero, C. and A. Duran (1985). 'Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization.' Journal of bacteriology 163(3): 1180-1185. Russo, P., N. Kalkkinen, H. Sareneva, J. Paakkola and M. Makarow (1992). 'A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein.' Proceedings of the National Academy of Sciences 89(9): 3671-3675. Russo, P., M. Simonen, A. Uimari, T. Teesalu and M. Makarow (1993). 'Dual regulation by heat and nutrient stress of the yeast HSP150 gene encoding a secretory glycoprotein.' Molecular and General Genetics MGG 239(1-2): 273-280. Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips and F. M. Klis (1996). 'Immobilizing proteins on the surface of yeast cells.' Trends Biotechnol 14(4): 115-120. Shinjo, K., J. G. Koland, M. J. Hart, V. Narasimhan, D. I. Johnson, T. Evans and R. A. Cerione (1990). 'Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42.' Proceedings of the National Academy of Sciences of the United States of America 87(24): 9853. Sobel, J. D., J. Vazquez, M. Lynch, C. Meriwether and M. J. Zervos (1993). 'Vaginitis due to Saccharomyces cerevisiae: epidemiology, clinical aspects, and therapy.' Clin Infect Dis 16(1): 93-99. Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein and B. Futcher (1998). 'Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.' Molecular biology of the cell 9(12): 3273-3297. Staab, J. F., S. D. Bradway, P. L. Fidel and P. Sundstrom (1999). 'Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1.' Science 283(5407): 1535-1538. Sumita, T., T. Yoko-o, Y.-i. Shimma and Y. Jigami (2005). 'Comparison of cell wall localization among Pir family proteins and functional dissection of the region required for cell wall binding and bud scar recruitment of Pir1p.' Eukaryotic cell 4(11): 1872-1881. Sundstrom, P. (2002). 'Adhesion in Candida spp.' Cellular microbiology 4(8): 461-469. Tawfik, O. W., C. J. Papasian, A. Y. Dixon and L. M. Potter (1989). 'Saccharomyces cerevisiae pneumonia in a patient with acquired immune deficiency syndrome.' J Clin Microbiol 27(7): 1689-1691. Teparić, R., I. Stuparević and V. Mrša (2004). 'Increased mortality of Saccharomyces cerevisiae cell wall protein mutants.' Microbiology 150(10): 3145-3150. Verstrepen, K. J. and F. M. Klis (2006). 'Flocculation, adhesion and biofilm formation in yeasts.' Molecular microbiology 60(1): 5-15. Wheeler, R. T. and G. R. Fink (2006). 'A drug-sensitive genetic network masks fungi from the immune system.' PLoS pathogens 2(4): e35. Wheeler, R. T., M. Kupiec, P. Magnelli, C. Abeijon and G. R. Fink (2003). 'A Saccharomyces cerevisiae mutant with increased virulence.' Proceedings of the National Academy of Sciences 100(5): 2766-2770. Williams, D. L., R. B. McNamee, E. L. Jones, H. A. Pretus, H. E. Ensley, I. W. Browder and N. R. Di Luzio (1991). 'A method for the solubilization of a (1→ 3)-β-d-glucan isolated from< i> Saccharomyces cerevisiae</i>.' Carbohydrate research 219: 203-213. Williams, N. (1996). 'Yeast genome sequence ferments new research.' Science 272(5261): 481. Yun, D.-J., Y. Zhao, J. M. Pardo, M. L. Narasimhan, B. Damsz, H. Lee, L. R. Abad, M. P. D’Urzo, P. M. Hasegawa and R. A. Bressan (1997). 'Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein.' Proceedings of the National Academy of Sciences 94(13): 7082-7087. 江珮琪 (2009). 利用質譜分析比較Saccaromyces cerevisiae臨床與實驗室菌株的細胞壁蛋白質體. Master, National Taiwan University. 吳玉珊 (2007). 探討台灣臨床分離的菌株Saccharomyces cerevisiae重要的致病因子之一–假菌絲的形成. Master, National Taiwan University. 李承光 (2007). 探討台灣臨床分離的菌株Saccharomyces cerevisiae主要的致病因子之一:高溫生長能力. Master, National Taiwan University. 郭筱筠 (2011). 臺灣釀酒酵母菌臨床分離菌株之FLO11 基因對其mat 表現型 及其他相關性狀探討. Master, National Taiwan University. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58896 | - |
| dc.description.abstract | 摘 要 – 第一部分
探討酵母菌壽命分析方法為複製存活壽命(replicative lifespan;RLS),定義為計算母細胞所分離出的子代數作為其壽命數,時序壽命(chronological lifespan;CLS),定義為測定細胞培養在液態培養液中存活時間作為其壽命數。目前細胞老化理論指出細胞內活性氧(reactive oxygen species;ROS)增加是造成細胞壽命減短的因素。科學家亦藉由探討天然小分子例如:橙皮柑(hesperidin)延長酵母菌壽命機制,釐清細胞內老化路徑。靈芝屬(Genus Ganoderma)屬於真菌界生物,先前研究指出靈芝粗萃取物具有抗氧化功能,但是目前尚無研究探討靈芝的抗氧化功能是否具有延長壽命的證據。本實驗目的即以RLS篩選靈芝屬粗黃芝(Ganoderma colossum)的萃取物EEGC是否具有使酵母菌壽命延長效果,再分析EEGC在酵母菌內的抗氧化效果,最後探討其抗氧化能力是否參與抗老化機制。實驗首先測試菌株(BY4742)生長曲線實驗確定EEGC是否具酵母菌生長抑制,結果顯示2 mg/ml EEGC處理下酵母菌生長情形較低,而選用0.5及1 mg/ml EEGC處理酵母菌。 N-乙醯基半胱氨酸(N-acetylcysteine;NAC)具有解除細胞內氧化壓力的功能,作為RLS實驗陽性控制組,RLS實驗觀察發現0.5 mg/ml EEGC具有顯著性延長酵母菌壽命。另外以CLS分析0.5及1 mg/ml EEGC發現無顯著性使酵母菌壽命延長。接下來分析EEGC處理下酵母菌內的ROS累積情形,結果發現0.2, 0.5或1 mg/ml EEGC顯著性使H2O2刺激下累積的ROS量下降,且同時具有抑制H2O2 刺激產生ROS累積的效果。接著操作即時定量聚合酶連鎖反應(real-time PCR) 發現EEGC具有降低SOD1、SOD2及SIR2 mRNA表現量,而測試SIRT1活性分析得到0.5及1 mg/ml EEGC具有顯著性增加SIRT1酵素活性,推測EEGC可能具有增加酵母菌Sir2p活性並藉由此抗老化路徑達到延長壽命結果,故未來可針對EEGC的抗老化機制做深入探討,以釐清細胞內的老化路徑。 摘 要 – 第二部分 酵母菌廣泛分佈於自然界中並使用在工業及食品工業上,然而近期臨床報告指出在免疫能力低下患者身上分離出具有致病性的酵母菌,使得人們重新思考致病性酵母菌潛在危險。實驗室先前研究台灣酵母菌臨床分離菌株與實驗室菌株的細胞壁蛋白質體組成差異發現,臨床菌株的細胞壁蛋白質Scw10p、Hsp150p、Pst1p蛋白量相較於實驗室菌株有顯著增加。Hsp150p屬於Pir家族蛋白,為釐清Hsp150p在酵母菌臨床分離菌株的細胞壁含量增加是否與其致病性有關,而深入探討Hsp150p與致病性分析。本研究建構三株臨床hsp150缺陷菌株,先以細胞壁表現型分析得到臨床hsp150缺陷菌株相對於親代菌株在Calcofluor white及Congo red環境下生長情形慢但並未影響菌株生長能力,顯示Hsp150p確實影響細胞壁完整性使細胞需要更長時間來適應有壓力的環境。接著測試細胞表面疏水性及塑膠表面吸附能力發現,臨床hsp150缺陷菌株具有降低細胞表面疏水性,但不顯著性影響塑膠表面吸附能力,表示Hsp150p可能參與在細胞表現疏水性調控。最後以酵母菌刺激巨噬細胞Raw264.7細胞株分泌TNF-α量推測臨床hsp150缺陷菌株的致病性,結果得到臨床hsp150缺陷菌株相較於原臨床菌株更能刺激TNF-α分泌,推測可能因Hsp150p缺陷造成細胞壁不完整導致未知的致病因子裸露。本研究中探討Hsp150p對臨床菌株造成表現型的變化,以期在未來能有助於細胞壁在臨床菌株致病性的探討。 | zh_TW |
| dc.description.abstract | Abstract – Part I
There are two methods to access the lifespan of yeast. One is called replicative lifespan (RLS) defined by the number of daughter cells produced by single mother cell. The other method called chronological lifespan (CLS) defined by how long yeasts survived in liquid culture. Nowadays, it is proposed that the cellular accumulation of reactive oxygen species (ROS) might reduce the lifespan of organism. According to previous studies, under the treatment of small natural molecule like hesperidin, the lifespan of yeast was extended by reducing oxidative pressure. Genus Ganoderma belong to kingdom Fungi, and show obvious effect of antioxidant activities. However, there is still no report clearly stated that Genus Ganoderma could extend the lifespan of an organism by the antioxidant effect. In this study, we analyzed EEGC extracted from Ganoderma colossum to understand its anti-aging effect and mechanism of yeasts. At first, we established the treatment of 10 mM N-acetylcysteine (NAC) as the positive control of RLS. We found that 2 mg/ml EEGC could lower the growth rate of yeasts. In addition, it was hard to analyze effect of >1 mg/ml EEGC because it revealed turbidity. It was observed that 0.5 mg/ml EEGC could significantly extent RLS of yeasts but not CLS. Moreover, treatment of 0.2, 0.5, or 1 mg/ml EEGC all showed antioxidant effect to reduce the accumulation of ROS levels induced by H2O2. Our data also showed that EEGC could significantly decreased SOD1、SOD2、SIR2 mRNA levels in cells. The SIRT1 activity assay implied that 0.5 or 1 mg/ml EEGC may enhance Sir2p activity in yeast. Altogether, we demonstrated that EEGC may extend yeast replicative lifespan, and could act as an antioxidant in yeast. The anti-aging mechanism of EEGC and the correlation of Sir2p activity should be further investigated. Abstract – Part II Saccharomyces cerevisiae is widely distributed in nature, and has become increasingly important in biotechnology and food industry. However, numerous cases of clinical infection caused by S. cerevisiae have been reported in recent years, considering S. cerevisiae as an emerging opportunistic pathogen. Cell wall is the first surface of the cell to encounter stresses from host defenses and environmental stresses. In addition, cell wall is responsible for yeast viability and adhesion ability to host. Our previous analysis of the composition of cell wall protein between clinical isolates and laboratory strains found that cell wall proteins Scw10p, Hsp150p, and Pst1p expressed at higher levels in clinical isolates. To clarify the role of Hsp150p in clinical isolates, we constructed three hsp150 deletion strains in clinical isolate background, and analyze the impact in cell wall integrity, adhesion ability, cell surface hydrophobicity, and virulence. We found that hsp150 deletion strains grew slower than parental clinical isolates under high dosage of Calcofluor white or Congo red. Secondly, hsp150 deletion in clinical isolates did not affect the adhesion ability or cell surface hydrophobicity. Lastly, we found that hsp150 deletion strains stimulated mouse macrophage cell lines to secret higher levels of TNF-α than parental clinical isolates, implying that deletion of Hsp150p may interrupt cell wall integrity and expose unknown virulence factors to macrophages. In this study, we found that Hsp150p may be responsible for, at least in part, the integrity of cell wall, and may play a role in yeast virulence. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:37:23Z (GMT). No. of bitstreams: 1 ntu-102-R00424005-1.pdf: 2467178 bytes, checksum: 5ae7dc0de0ad33cadec33ea6cf8d6310 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目 錄 – 第一部分
中文摘要 II 英文摘要 II 圖目錄 VII 表目錄 VIII 略語表 IX 第一章 緒 論 1 第二章 材料與方法 9 一、實驗材料 9 二、實驗方法 10 1. 實驗菌株培養 10 2. 複製存活壽命(replicative lifespan;RLS) 10 3. 時序壽命(chronological lifespan;CLS) 11 4. 生長曲線(growth curve) 12 5. 活性氧(reactive oxygen species;ROS)分析 12 6. 酵母菌核醣核酸(RNA)萃取 13 7. 反轉錄聚合酶連鎖反應(reverse transcriptase - PCR) 13 8. 聚合酶連鎖反應 14 9. 即時定量聚合酶連鎖反應(real-time PCR) 14 10. SIRT1酵素活性分析 14 第三章 實驗結果 16 一、確定N-乙醯基半胱氨酸(NAC)對酵母菌的複製壽命表現性 16 二、篩選EEGC 對酵母菌的複製壽命及時序壽命表現性 16 三、分析處理EEGC 後酵母菌內ROS 累積情形 18 四、以即時定量聚合酶連鎖反應(real-time PCR)分析EEGC 處理下SOD1、SOD2及SIR2 mRNA 表現量 20 五、SIRT1 酵素活性分析 20 第四章 討 論 22 第五章 圖 表 27 第六章 參考文獻 44 附 錄 52 目 錄 – 第二部分 中文摘要 III 英文摘要 IV 圖目錄 XII 表目錄 XIII 略語表 XIV 第一章 緒 論 66 第二章 材料與方法 72 一、實驗材料 72 二、實驗方法 74 1. 實驗菌株培養 74 2. 酵母菌基因體去氧核醣核酸(genomic DNA)萃取 74 3. 聚合酶連鎖反應 75 4. 洋菜膠電泳分析 76 5. 聚合酶連鎖反應產物純化 76 6. 酵母菌轉形作用 76 7. 四分孢子分離實驗 77 8. 酵母菌核醣核酸(RNA)萃取 77 9. 反轉錄聚合酶連鎖反應(reverse transcriptase - PCR) 78 10. 細胞壁表現型分析 (phenotypic cell wall assays) 78 11. 96 孔微量培養盤黏附性實驗 79 12. 細胞表面疏水性測定(MATH) 79 13. 細胞培養 80 14. 以酵母菌刺激Raw264.7 細胞株分泌腫瘤壞死因子α (tumor necrosis factor α;TNF-α) 80 第三章 實驗結果 82 一、臨床hsp150 缺陷菌株製備及確認 82 二、確認臨床hsp150缺陷菌株細胞壁完整性 84 三、分析臨床hsp150 缺陷菌株96 孔微量培養盤黏附能力 85 四、分析臨床hsp150 缺陷菌株細胞表面疏水性能力 86 五、分析臨床hsp150 缺陷菌株刺激Raw264.7 細胞株分泌腫瘤壞死因子α (TNF-α)能力 87 第四章 討 論 89 第五章 圖 表 93 第六章 參考文獻 106 附 錄 112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靈芝屬真菌 | zh_TW |
| dc.subject | 活性氧 | zh_TW |
| dc.subject | Hsp150p | zh_TW |
| dc.subject | 致病型 | zh_TW |
| dc.subject | 細胞壁 | zh_TW |
| dc.subject | 釀酒酵母菌 | zh_TW |
| dc.subject | 臨床分離菌株 | zh_TW |
| dc.subject | 壽命 | zh_TW |
| dc.subject | lifespan | en |
| dc.subject | Saccharomyces cerevisiae | en |
| dc.subject | virulence | en |
| dc.subject | Hsp150p | en |
| dc.subject | cell wall | en |
| dc.subject | clinical isolate | en |
| dc.subject | Ganoderma | en |
| dc.subject | ROS | en |
| dc.title | 篩選黃芝酒精萃取物延長酵母菌壽命及抗老化機制探討/探討細胞壁蛋白質Hsp150p在台灣酵母菌臨床分離菌株的表現型 | zh_TW |
| dc.title | Investigation of the anti-aging effect and mechanism of ethanol extract from Ganoderma colossum in Saccharomyces cerevisiae / Investigation of the phenotypic effects of cell wall protein Hsp150p in Taiwan clinical isolates of Saccharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑萍(Shwu-Bin Lin),楊雅倩(Ya-Chien Yang),胡忠怡(Chung-Yi Hu) | |
| dc.subject.keyword | 釀酒酵母菌,壽命,活性氧,靈芝屬真菌,臨床分離菌株,細胞壁,Hsp150p,致病型, | zh_TW |
| dc.subject.keyword | Saccharomyces cerevisiae,lifespan,ROS,Ganoderma,clinical isolate,cell wall,Hsp150p,virulence, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-10-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
