Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58892
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙聖德(Sheng-De Chao)
dc.contributor.authorYi-De Linen
dc.contributor.author林宜德zh_TW
dc.date.accessioned2021-06-16T08:37:09Z-
dc.date.available2016-11-06
dc.date.copyright2013-11-06
dc.date.issued2013
dc.date.submitted2013-10-25
dc.identifier.citation[1] C.K. LIN and M.H. Lien, J. Phys. Chem., Vol. 99, No. 5, 1995
[2] K.-M. Marstokk and S.Samdal, Journal of Molecular Structure 524 (2000) 69–85
[3] A.S.R. Duarte and A.M. Amorim da Costa, Journal of Molecular Structure: THEOCHEM 723 (2005) 63–68
[4] H.M.Badawi, Spectrochimica Acta Part A 68 (2007) 432–442
[5] O. S. Tyagi, H. S. Bisht, and A. K. Chatterjee, J. phys. Chem. B 108, 3010 (2004).
[6] P. Hobza and R. Zahradnik, Intermolecular Complexes : the role of van der Waals system in physical chemistry and in the biodisciplines (Elsevier, New York, 1988).
[7] G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Springer-Verlag, Berlin, 1991).
[8] A. J. Stone, The Theory of the Intermolecular Forces (Oxford University Press, Oxford, 1996).
[9] A. K. Rappe, and E. R. Bernstein, J. phys. Chem. A 104, 6117 (2000).
[10] G. Chalasinski, and M. M. Szczesniak, Chem Rev. 100, 4227 (2000).
[11] R. J. Wheatley, A. S. Tulegenov, E. Bichoutskaia, Int. Rev. Phys. Chem. 23, 151 (2004).
[12] Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005).
[13] S. Grimme, J. Comp. Chem. 25, 1463 (2004).
[14] Gu, Y. Kar, T.; Scheiner, S. J .Am. Chem. Soc. 1999, 121, 9411.
[15] Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.
[16] Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447
[17] Qian, W.; Krimm, S. J. Phys. Chem. A 2002, 106, 6628
[18] M. Marques, E. Gross, Annual Rev. Phys. Chem. 55, 427 (2004).
[19] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, J. Phys. Chem. A 109, 11015 (2005).
[20] M. Sutton, “Getting the numbers right – the lonely struggle of Rydberg” Chemistry World, Vol. 1, No. 7, July 2004.
[21] J. J. Thomson, Cathode rays, Philosophical Magazine, 44, 293 ─ Discovery of the electron (1897).
[22] J. J. Thomson, Rays of positive electricity, Proceedings of the Royal Society, A 89, 1-20─Discovery of neon isotopes (1913).
[23] E. Rutherford, “The Scattering of and Particles by Matter and the Structure of Atom”, Philos. Mag., vol. 6, pp.21, 1909.
[24] N. Bohr, On the Constitution of Atoms and Molecules. Phil. Mag. 26 (1913).
[25] L. de Broglie, Phil. Mag., 47, 446 (1924).
[26] Krishnan, R. and Binkley, J. S. and Seeger, R. and Pople, J. A., J. Chem. Phys. 72, 650 (1980).
[27] Dunning, T. A., Jr., J. Chem. Phys. 90, 1007 (1989).
[28] Boys, S. F. and Bernardi, F., Mol. Phys. 19, 553 (1970).
[29] Frisch, M. J.; et al. Gaussian 09; Gaussian, Inc.:Wallingford,CT,2009.
[30] N. Jonathan, J. Mol. Spect. 6 (1961) 205
[31] Anal. Methods, 2013, 5, 2020-2027
[32] Journal of Molecular Structure, 69(1980) 79-88
[33] J. M. L. Martin, Chem Phys Lett., 259, 669 (1996).
[34] T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys., 106, 9639 (1997).
[35] Becke, A. D. Phys Rev A 1988, 38, 3098.
[36] Becke, A. D. J Chem Phys 1993, 98, 5648.
[37] Lee, C.;Yang, W.;Parr, R. G. Phys Rev B 1988, 37, 785.
[38] Vosko, S. H.;Wilk, L.;Nusair, M. Can J Phys 1980, 58, 1200.
[39] Xu, X.;Goddard, W. A. Proc Natl Acad Sci USA 2004, 101, 2673.
[40] Zhao, Y.;Schultz, N. E.;Truhlar, D. G. J Chem Phys 2005, 123, 161103.
[41] Zhao, Y.;Schultz, N. E.;Truhlar, D. G. J Chem Theory Comput 2006, 2, 364.
[42] Zhao, Y.;Truhlar, D. G. Theor Chem Acc 2008, 120, 215.
[43] Grimme, S. J Chem Phys 2006, 124, 034108.
[44] Schwabe, T.;Grimme, S. Phys Chem Chem Phys 2007, 9, 3397.
[45] Grimme, S. J Comput Chem 2006, 27, 1787.
[46] J. Heyd and G. Scuseria, “Efficient hybrid density functional calculations in solids: The HS-Ernzerhof screened Coulomb hybrid functional,” J. Chem. Phys., 121 (2004) 1187-92.
[47] J. Heyd and G. E. Scuseria, “Assessment and validation of a screened Coulomb hybrid density functional,” J. Chem. Phys., 120 (2004) 7274.
[48] J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys., 123 (2005) 174101: 1-8.
[49] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: ‘Hybrid functionals based on a screened Coulomb potential’,” J. Chem. Phys., 124 (2006) 219906.
[50] A. F. Izmaylov, G. Scuseria, and M. J. Frisch, “Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems,” J. Chem. Phys., 125 (2006) 104103: 1-8.
[51] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys., 125 (2006) 224106.
[52] J. Heyd, G. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys., 118 (2003) 8207-15.
[53] O. A. Vydrov and G. E. Scuseria, “Assessment of a long range corrected hybrid functional,” J. Chem. Phys., 125 (2006) 234109.
[54] O. A. Vydrov, J. Heyd, A. Krukau, and G. E. Scuseria, “Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals,” J. Chem. Phys., 125 (2006) 074106.
[55] O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, “Tests of functionals for systems with fractional electron number,” J. Chem. Phys., 126 (2007) 154109.
[56] T. Yanai, D. Tew, and N. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chem. Phys. Lett., 393 (2004) 51-57.
[57] J.-D. Chai and M. Head-Gordon, “Systematic optimization of long-range corrected hybrid density functionals,” J. Chem. Phys., 128 (2008) 084106.
[58] J.-D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections,” Phys. Chem. Chem. Phys., 10 (2008) 6615-20.
[59] H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, “Long-range correction scheme for generalized-gradient-approximation exchange functionals,” J. Chem. Phys., 115 (2001) 3540-44.
[60] C. Adamo and V. Barone, “Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models,” J. Chem. Phys., 108 (1998) 664-75.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58892-
dc.description.abstract進行量子化學理論計算時,我們使用Gaussian09軟體,以MP2/6-311++G**、MP2/aug-cc-pVTZ計算C3H5NO(丙烯醯胺)的單體最佳化結構。得到單體最佳化結構後,接著以順式丙烯醯胺及反式丙烯醯胺交互形成十二種二聚體,以微擾理論(Moller-Plesset perturbation theory ,MP)來進行丙烯醯胺二聚體間的分子作用力計算,使用基底最高到6-311++G(3df,3pd)及aug-cc-pVTZ,其中均加入了BSSE修正,以探討鍵結距離,氫鍵、凡德瓦力的能量大小,以及頻率變化。計算單體得到的IR光譜,由高波數區域(4000~1500 cm-1)得到丙烯醯胺分子中的官能基頻率及振動型態;由低波數區域(1500~0 cm-1)得到丙烯醯胺本身特有的振動頻率(主要由C-C構成)。若比較單體及雙體的吸收光譜,由不同頻率的紅藍移和強度變化,可以分析出各種不同構型間的鍵結類型(如:凡得瓦力、氫鍵)。與實驗值的比較,可以發現二聚體可能的過渡態及不同的轉換型態,推斷是否有質子轉移的可能性。
接著使用密度泛函理論(Density functional theory ,DFT)來計算丙烯醯胺雙體結構。我們採用了17種不同的DFT(M05、M052X、M06、M062X、M06L、B97D、wB97X、wB97XD、B3LYP、CAM-B3LYP、X3LYP、mPW1PBE、mPW3PBE、LC-wPBE、HSEH1PBE、B2PLYP、B2PLYPD),將所得的計算結果與MP2做比較,找出最適合雙氫鍵結構的DFT。
zh_TW
dc.description.abstractAll the quantum chemistry calculations were performed at the MP2 level of theory using the Gaussian 09 program package. The isolated C3H5NO molecule was first optimized at the aug-cc-pVTZ and 6-311++G** level. After the optimization of monomer, intermolecular interaction potentials of the acrylamide dimer in 12 orientations have been calculated using the second-order Moller-Plesset (MP2) perturbation theory. We have employed pople’s medium size basis sets [up to 6-311++G(3df,3pd)], Dunning’s correlation consistent basis sets (up to aug-cc-pVTZ) and the correction of the basis-set superposition error(BSSE) to explore the bonding distance, hydrogen bonding, van der Waals force, and vibration. IR spectrum calculated by monomers can be obtained the functional groups in the molecule from high wavenumber region (4000 ~ 1500 cm-1), and vibration types from low wavenumber region (1500 ~ 0 cm-1)(mainly constituted by the CC). When comparing the vibration spectrum of the monomer and the dimer, we can analyze different types of bonding from the different frequency shift and the intensity (such as: van der Waals forces, hydrogen bond). To compare with the experimental values can find possible transition states and different conversion types of dimer, to infer whether there is the possibility of proton transfer.
We also have carried out 17 methods of the Density Functional theory(DFT) (M05、M052X、M06、M062X、M06L、B97D、wB97X、wB97XD、B3LYP、CAM-B3LYP、X3LYP、mPW1PBE、mPW3PBE、LC-wPBE、HSEH1PBE、B2PLYP、B2PLYPD)calculations, and then compared with the results of MP2.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:37:09Z (GMT). No. of bitstreams: 1
ntu-102-R00543052-1.pdf: 6983919 bytes, checksum: 7cc444ef93a5e07ea5d3d6ba778bd01b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
致謝 I
摘要 II
Abstract III
表目錄 VII
圖目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 分子間作用力 2
第二章 基本理論介紹 4
2.1 量子力學理論 4
2.1.1 量子力學發展 4
2.1.2 薛丁格方程式(Schrodinger equation) 6
2.1.3 玻恩-奧本海默近似法(Born-Oppenheimer approximation) 9
2.2 Ab initio分子軌域理論 12
2.2.1 自洽理論Hartree-Fock approximation (HF) 12
2.2.2 微擾理論Moller-Plesset perturbation theory (MP) 17
2.2.3 密度泛函理論 Density functional theory (DFT) 22
第三章 計算方法 26
3.1 丙烯醯胺單體之量子化學計算方法 26
3.2 丙烯醯胺二聚體的量子化學計算方法 27
3.2.1 丙烯醯胺二聚體最佳化構型 27
3.2.2 丙烯醯胺分子間位勢能曲線 27
3.2.3 丙烯醯胺振動光譜分析 28
第四章 計算、模擬結果與討論 29
4.1 丙烯醯胺單體之量子化學計算 29
4.1.1 MP2計算結果 29
4.1.2 丙烯醯胺單體振動光譜 33
4.2 丙烯醯胺二聚體量子化學計算 37
4.2.1 順式-順式(syn-syn)二聚體計算結果 38
4.2.2 反式-反式(skew-skew)二聚體計算結果 42
4.2.3 順式-反式(syn-skew)二聚體計算結果 45
4.2.4 與實驗值比較 50
4.3 DFT計算結果 56
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 62
附錄A 66
附錄B 69
附錄C 81
附錄D 84
附錄E 102
附錄F 104
dc.language.isozh-TW
dc.subject紅外線光譜zh_TW
dc.subjectGaussian09zh_TW
dc.subject丙烯醯胺zh_TW
dc.subject量子化學計算zh_TW
dc.subject氫鍵zh_TW
dc.subjectMoller-Plesset(MP)微擾理論zh_TW
dc.subject密度泛函理論(DFT)zh_TW
dc.subject丙烯醯胺二聚體zh_TW
dc.subject振動光譜zh_TW
dc.subjectvibrational spectroscopyen
dc.subjecthydrogen bonden
dc.subjectacrylamideen
dc.subjectMoller-Plesset (MP) perturbation theoryen
dc.subjectdensity functional theory (DFT)en
dc.subjectdimer of acrylamideen
dc.subjectquantum chemistry calculationen
dc.subjectinfrared spectroscopyen
dc.subjectGaussian09en
dc.title丙烯醯胺之分子間作用力與振動光譜的量子化學計算zh_TW
dc.titleQuantum Chemistry Calculation of Intermolecular Interactions and Vibration Spectrum of Acrylamideen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江志強,黃慶怡,林祥泰,蔡政達
dc.subject.keyword量子化學計算,氫鍵,丙烯醯胺,Moller-Plesset(MP)微擾理論,密度泛函理論(DFT),丙烯醯胺二聚體,振動光譜,紅外線光譜,Gaussian09,zh_TW
dc.subject.keywordquantum chemistry calculation,hydrogen bond,acrylamide,Moller-Plesset (MP) perturbation theory,density functional theory (DFT),dimer of acrylamide,vibrational spectroscopy,infrared spectroscopy,Gaussian09,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2013-10-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved