Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志達
dc.contributor.authorCheng-Ying Wuen
dc.contributor.author吳政穎zh_TW
dc.date.accessioned2021-06-16T08:36:28Z-
dc.date.available2016-11-13
dc.date.copyright2013-11-13
dc.date.issued2013
dc.date.submitted2013-11-05
dc.identifier.citation[1] 衛生福利部國民健康署(2013/10月)
http://health99.doh.gov.tw/txt/HealthyHeadlineZone/HealthyHeadlineDetai.aspx?TopIcNo=6798
[2] WIKIPEDIA Electrocardiography. (2013/10月)
http://en.wikipedia.org/wiki/Electrocardiography
[3] P. W. Armstrong, et al, “Acute coronary syndromes in GUSTO-IIb trial: prognostic insights and impact of recurrent ischemia,” Circulation, vol. 98, pp. 1860–1868, 1998.
[4] E. M. Antman, M. Cohen, P. J. Bernink, et al, “The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making,” Jour. of the American Medical Association, vol. 284, no. 7, pp. 835–842, 2000.
[5] D. A. Morrow, E. M. Antman, A. Charlesworth, et al, “TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation: an intravenous nPA for treatment of infarcting myocardium early II trial substudy,” Circulation, vol. 102, pp. 2031–2037, 2000.
[6] Eng Wei Tang, MMed,Cheuk-Kit Wong, MD,and Peter Herbison, MScDunedin, New Zealand, “Global Registry of Acute Coronary Events (GRACE) hospital discharge risk score accurately predicts long-term mortality post acute coronary syndrome”, American Heart Journal, January 2007.
[7] Z. Wu and N. E. Huang, “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method.” Advances in Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009.
[8] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng., vol. BME-32, pp. 230–236, Mar. 1985.
[9] MIMIC II database(2013/10月)
http://www.physionet.org/mimic2
[10] C. Levkov, G. Mihov, R. Ivanov, et al., “Removal of power-line interference from the ECG: a review of subtraction procedure,” Biomed. Eng. Online, vol. 50, no. 4, pp. 1–18, 2005.
[11] B. Mozaffary, M. A. Tinati, “ECG Baseline Wander Elimination using Wavelet Packets,” World Academy of Science, Engineering and Technology, vol. 3, pp. 14–16, 2005.
[12] S.-H. Liu, “Motion artifact reduction in electrocardiogram using adaptive filter,” Journal of Medical and Biological Engineering, vol. 31, pp. 64–72, 2011.
[13] M. Kaur, B. Singh, Seema, “Comparisons of Different Approaches for Removal of baseline wander from ECG signal,” 2nd International Conference and Workshop on Emerging Trend (ICWET), pp. 30–34, 2011.
[14] K.-M. Chang, “Arrhythmia ECG noise reduction by ensemble empirical mode decomposition,” Sensors, vol. 10, no. 6, pp. 6063–6080, 2010.
[15] N. E. Huang, Z. Shen, S. R. Long, et al., “The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis,” Proc. Roy. Soc. London 454A, vol. 454, pp. 903–995, 1998.
[16] N. E. Huang and S. S. P. Shen, Eds., Hilbert–Huang Transform and Its Applications, Singapore: World Scientific, 2005.
[17] WIKIPEDIA 希爾伯特-黃轉換(2013/10月)
http://zh.wikipedia.org/wiki/希爾伯特-黃轉換
[18] Z. Wu and N. E. Huang, 'Ensemble empirical mode decomposition: A noise-assisted data analysis method,' Advanced Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009.
[19] F.-H. Chou and J.-C. Huang, “Apply pipelining empirical mode decomposition accelerate an emotionalized speech processing,” International Conference on Wavelet Analysis and Pattern Recognition, pp. 229–234, Jul. 2009.
[20] F. L. Zarraga, “On-line extraction of modal characteristics from power system measurements based on Hilbert-Huang analysis,” 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, pp. 1–6, Jan. 2009.
[21] R. Faltermeier, A. Zeiler, I. R. Keck, et al., “Sliding Empirical Mode Decomposition,” The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, Jul. 2010.
[22] S. Z. Mahmoodabadi, A. Ahmadian, M. D. Abolhasani, “ECG Feature Extraction Using Daubechies Wavelets,” Proceedings of the 5th IASTED International Conference on Visualization, Imaging and Image Processing, pp.343–348, 2005.
[23] Y.-C. Yeh, W.-J. Wang, 'QRS complexes detection for ECG: The Difference Operation Method,' Computer Methods and Programs in Biomedicine, vol. 91, pp.245–254, 2008.
[24] D. Benitez, P. A. Gaydecki, A. Zaidi, A. P. Fitzpatrick, 'The use of the Hilbert transform in ECG signal analysis,' Computers in Biology and Medicine, pp. 399–406, 2001.
[25] J. Pan and W. J. Tompkins, 'A real-time QRS detection algorithm,” IEEE Transaction on Biomedical Engineering, vol. BME-32, pp. 230–236, Mar. 1985.
[26] Task force ESC/NASPE, “Heart rate variability, standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, pp. 1043–1065, 1996.
[27] R. E. Kleiger, J. P. Miller, J. T. Bigger Jr., et al., “Decreased heart rate variability and its association with increased mortality after acute myocardial infarction,” American Journal of Cardiology, vol. 59, pp. 256–262, 1987.
[28] A. Berkowitsch, A. Bauer, R. Schneider, et al, “Slope of Autocorrelation Function of Detrended 24-Hour RR-Intervals Independently Predicts Mortality in Postinfarction Patients,” Computers in Cardiology, vol. 31, pp. 733–736, 2004.
[29] A. Bauer, J. W. Kantelhardt, P. Barthel, et al, “Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study,” Lancet, vol. 367, pp. 1674–1681, 2006.
[30] Madalena Costa, Ary L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of biological signals”, PHYSICAL REVIEW E 71, 021906 (2005)
[31] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale Entropy Analysis of Complex Physiologic Time Series,” Phys. Rev. Lett., vol. 89, no. 6, pp. 68102-1 – 68102-4, 2002
[32] LDA tutorials(2013/10月)
http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/LDA.pdf
[33] P. Guzik, J. Piskorski, P. Barthel, et al., “Heart rate deceleration runs for postinfarction risk prediction,” Journal of Electrocardiology, vol. 45, pp. 70–76, 2012.
[34] M. P. Slawnych, T. Nieminen, M. Kahonen, et al., “Post-Exercise Assessment of Cardiac Repolarization Alternans in Patients With Coronary Artery Disease Using the Modified Moving Average Method,” Journal of the American College of Cardiology, vol. 53, pp. 1130–1137, 2009.
[35] Z. Syed, B. M. Scirica, S. Mohanavelu, et al., “Relation of death within 90 days of non-ST-elevation acute coronary syndromes to variability in electrocardiographic morphology,” American Journal of Cardiology, vol. 103, pp. 307–311, 2009.
[36] Z. Syed, C. M. Stultz, B. M. Scirica, and J. V. Guttag, “Computationally Generated Cardiac Biomarkers for Risk Stratification after Acute Coronary Syndrome,” Science Translational Medicine, vol. 3, Sep. 2011.
[37] WIKIPEDIA Artificial neural network. (2013/10月)
http://en.wikipedia.org/wiki/Artificial_neural_network
[38] Ruslan Salakhutdinov, Geoffrey Hinton, “An Efficient Learning Procedure for Deep Boltzmann Machines”, Neural Computation 24, 1967–2006 (2012) c2012 Massachusetts Institute of Technology.
[39] Geoffrey Hinton, “A Practical Guide to Training Restricted Boltzmann Machines”, August 2, 2010
[40] WIKIPEDIA sensitivity and specificity. (2013/10月)
http://en.wikipedia.org/wiki/Sensitivity_and_specificity
[41] MIT-BIH Arrhythmia Database [Online], Available: (2013/10月)
http://www.physionet.org/physiobank/database/mitdb/
[42] NASA Goddard Institute for Space Studies (GISS) [Online], Available: (2013/10月)
http://data.giss.nasa.gov/gistemp/
[43] S. Geisser, Predictive Inference, New York: Chapman and Hall, 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58881-
dc.description.abstract急性冠心症肇因於心臟肌肉缺血或缺氧,是長久以來位居我國十大死因前三的重大疾病。判斷急性冠心症病患預後危險程度的系統是非常重要的研究議題。傳統上,TIMI危險分數採用了病患的病史作為判斷之依據,是目前較廣被接受的作法。近年來,由於心電圖之方便性、快速性以及非侵入性,相當多以心電圖分析系統做為急性冠心症病患預後危險評估的研究出現。
本論文提出一套對急性冠心症病患預後危險評估之心電圖分析系統,蒐集並且使用某醫院所提供的病患資料來設計及驗證本論文所提出的系統。這個系統的心電圖分析系統架構包含資料蒐集、前處理、特徵擷取、以及最後使用人工智慧判斷病患之預後狀況,於系統中每一步驟本論文均有提出改進效能之方法。
對病患危險程度分類而言,傳統醫學上的研究通常使用迴歸分析,而本論文提出使用類神經網路設計較為複雜的系統來對急性冠心症病患預後做危險評估分析,利用人工智慧協助急性冠心症預後病患之危險評估也能達到比人為判斷或用統計模型所得出之預後效果還要好的危險程度判斷效果。傳統上由於使用人為判斷或多變數迴歸分析的方式做預後判斷,特徵必須足夠精確才會有顯著之危險分層效果;使用人工智慧的好處在於,即使特徵是由複數個生理因素所影響,在取用足夠多個特徵的狀況下機器仍能自動計算出特徵內的複數個生理因素,並做出危險判斷。換言之,傳統之分析方法需人工去蕪存菁,而人工智慧之方法則是機器自動做計算。本論文之實驗證實本系統所使用之簡單特徵搭配類神經網路可以得到極佳之危險評估效能。本論文所提出的對急性冠心症病患預後危險評估之心電圖分析系統,準確率可達八成以上。
zh_TW
dc.description.abstractAcute coronary syndrome (ACS), caused by rupture of an atherosclerotic plaque and partial or complete thrombosis of the infarct-related artery, has been on the first three places of the top ten causes of death in Taiwan for many years. Determine the prognosis of patients with acute coronary syndrome risk level of the system is a very important research topic. Traditionally, TIMI risk score using a patient's medical history as a basis for judgment, is the wide acceptance of the practice. In recent years, because the ECG is convenience, rapid and non-invasive, there are many studies about ECG analysis system as a prognosis of patients with acute coronary syndrome risk stratification.
A novel ECG analysis system for post-acute-coronary-syndrome (post-ACS) patients is proposed and applied to clinical data collected from a hospital. The ECG analysis system involves pre-processing, beat detection, feature extraction, and using machine learning to make prediction, is proposed. Each part in this system is enhanced by new algorithms or techniques. Instead of using regression analysis used in traditional biomedical researches, we use artificial neural network to build a more sophisticated model to classify the patients. Machine learning like artificial neural network can find the information hidden in the features, even if the used features are affected by multiple medical factors, while users have to use much more sophisticated features when they make prognosis by inspection or multivariate statistical analysis. The system we proposed gives the accuracy over 80% for stratification using only eight ECG features.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:36:28Z (GMT). No. of bitstreams: 1
ntu-102-R00943016-1.pdf: 3566044 bytes, checksum: 3c25e9c49e342d6c27dd851881a90e2f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書………..…………………………………………….……………..I
誌謝…………………...…..……………………………………………..………...…III
摘要……………………...……………………………...…………………..….………V
ABSTRACT…………..……………………………………………….…….………VII
圖目錄 XI
表目錄 XIV
1. 第一章 緒論 1
1.1 研究動機 1
1.2 心電圖分析系統介紹 3
1.2.1 心電圖介紹 3
1.2.2 心電圖分析系統架構 4
1.3 論文組織 4
2. 第二章 心電圖之前處理 5
2.1 心電圖雜訊 5
2.2 心電圖資料 7
2.2.1 Cohort-A 7
2.2.2 Cohort-B 7
2.2.3 MIMIC II 資料庫 8
2.3 去除心電圖雜訊的方法 9
2.3.1 文獻回顧 9
2.3.2 以集成經驗模態分解法去除心電圖雜訊 9
2.4 逐次降頻分段式集成經驗模態分解法 12
2.4.1 經驗模態分解法及集成經驗模態分解法 12
2.4.2 逐次降頻分段式集成經驗模態分解法 18
2.5 心跳偵測 23
2.5.1 Pan-Tompkins演算法 23
2.5.2 Pan-Tompkins演算法問題 25
2.5.3 改進Pan-Tompkins演算法 27
3. 第三章 心電圖特徵 29
3.1 文獻回顧 29
3.1.1 心跳間期相關的心電圖特徵 30
3.1.1.1 心跳變異度 31
3.1.1.2 心跳間期的自相關函數 33
3.1.1.3 心跳的減速能力 34
3.1.1.4 多尺度熵分析 37
3.1.2 形狀變化的心電圖特徵 42
3.1.2.1 T波變化 42
3.1.2.2 形狀變異度 43
3.2 本系統所使用之心電圖特徵 44
4. 第四章 機器學習法 46
4.1 K-最近鄰居演算法 46
4.2 支持向量機 46
4.3 類神經網路 47
4.3.1 倒傳遞類神經網路 47
4.3.2 深層學習類神經網路 52
4.3.2.1 架構及演算法 52
4.3.2.2 延伸型限制性波茲曼機演算法 54
5. 第五章 心電圖分析之系統 56
5.1 心電圖分析系統架構 56
5.1.1 心電訊號正規化 57
5.1.2 去除VPC及APC影響 59
5.1.3 去除RR間期的趨勢 61
5.1.4 去掉異常資料 62
5.1.5 將心電訊號特徵正規化 64
5.2 各個方法對心電圖分析系統表現的影響 65
6. 第六章 系統表現與臨床實驗結果 69
6.1 心電圖分析系統用於ACS後病患危險評估之結果 69
6.2 與GRACE SCORE比較危險分層能力 79
6.3 BPNN與DNN實驗結果比較 81
6.4 使用MIMIC II資料庫驗證本論文所提出的心電圖分析系統 83
7. 第七章 結論與展望 86
參考文獻 88
dc.language.isozh-TW
dc.subject類神經網路zh_TW
dc.subject心電圖zh_TW
dc.subject急性冠心症預後zh_TW
dc.subjectACS prognosisen
dc.subjectECGen
dc.subjectArtificial Neural Networken
dc.title以心電圖為基礎預測急性冠心症病人預後風險之研究zh_TW
dc.titleRisk Prediction for Post-ACS Patients Using ECGen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳安宇,曹恆偉,洪啟盛
dc.subject.keyword急性冠心症預後,心電圖,類神經網路,zh_TW
dc.subject.keywordACS prognosis,ECG,Artificial Neural Network,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2013-11-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved