請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58865完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹恆偉(Hen-Wai Tsao) | |
| dc.contributor.author | Tsung-Hsueh Pai | en |
| dc.contributor.author | 白宗學 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:35:31Z | - |
| dc.date.available | 2016-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-11-21 | |
| dc.identifier.citation | [1] A. Gupta, 'Efficient and scalable biologically plausible spiking neural networks with learning applied to vision,' The Pennsylvania State University, 2010.
[2] H. Paugam-Moisy and S. Bohte, 'Computing with spiking neuron networks,' Handbook of Natural Computing, 40p. Springer, Heidelberg, 2009. [3] W. Maass and C. M. Bishop, Pulsed neural networks: MIT press, 2001. [4] K.-I. Funahashi, 'On the approximate realization of continuous mappings by neural networks,' Neural networks, vol. 2, pp. 183-192, 1989. [5] K. Hornik, 'Approximation capabilities of multilayer feedforward networks,' Neural networks, vol. 4, pp. 251-257, 1991. [6] K. Chung-Ming, 'Artificial Neural Networks,' Institute of Economics, Academia Sinica, Taipei, TaiwanSep 2006. [7] W. Maass, 'Fast sigmoidal networks via spiking neurons,' Neural Computation, vol. 9, pp. 279-304, 1997. [8] W. Maass and T. Natschlager, 'Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding,' Network: Computation in Neural Systems, vol. 8, pp. 355-371, 1997. [9] O. Booij, 'Temporal pattern classification using spiking neural networks,' Unpublished master's thesis, University of Amsterdam, 2004. [10] V. Uzzell and E. Chichilnisky, 'Precision of spike trains in primate retinal ganglion cells,' Journal of Neurophysiology, vol. 92, pp. 780-789, 2004. [11] S. I. Fried, H.-A. Hsueh, and F. S. Werblin, 'A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation,' Journal of neurophysiology, vol. 95, pp. 970-978, 2006. [12] S. M. Bohte, J. N. Kok, and H. La Poutre, 'Error-backpropagation in temporally encoded networks of spiking neurons,' Neurocomputing, vol. 48, pp. 17-37, 2002. [13] W. Toshiki, T. Haruhiko, K. Hiroharu, and T. Shinji, 'A training algorithm for spikeprop improving stability of learning process,' in Neural Networks (IJCNN), The 2011 International Joint Conference on, 2011, pp. 951-955. [14] D. Hebb, 'Distinctive features of learning in the higher animal,' Brain mechanisms and learning, pp. 37-46, 1961. [15] F. Ponulak, 'ReSuMe-new supervised learning method for Spiking Neural Networks,' Institute of Control and Information Engineering, Poznan University of Technology.(Available online at: http://d1.cie. put. poznan. pl/~ fp/research. html), 2005. [16] R. Gutig and H. Sompolinsky, 'The tempotron: a neuron that learns spike timing–based decisions,' Nature neuroscience, vol. 9, pp. 420-428, 2006. [17] A. Bouganis and M. Shanahan, 'Training a spiking neural network to control a 4-DoF robotic arm based on spike timing-dependent plasticity,' in Neural Networks (IJCNN), The 2010 International Joint Conference on, 2010, pp. 1-8. [18] K. Doya, 'What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?,' Neural networks, vol. 12, pp. 961-974, 1999. [19] J. A. Wall, L. J. McDaid, L. P. Maguire, and T. M. McGinnity, 'Spiking Neural Network Model of Sound Localization Using the Interaural Intensity Difference,' Neural Networks and Learning Systems, IEEE Transactions on, vol. 23, pp. 574-586, 2012. [20] B. Meftah, O. Lezoray, and A. Benyettou, 'Segmentation and edge detection based on spiking neural network model,' Neural processing letters, vol. 32, pp. 131-146, 2010. [21] Q. Wu, T. M. McGinnity, L. Maguire, G. D. Valderrama-Gonzalez, and P. Dempster, 'Colour image segmentation based on a spiking neural network model inspired by the visual system,' in Advanced Intelligent Computing Theories and Applications, ed: Springer, 2010, pp. 49-57. [22] D. Zhang, S. Mabu, and K. Hirasawa, 'Image denoising using pulse coupled neural network with an adaptive Pareto genetic algorithm,' IEEJ Transactions on Electrical and Electronic Engineering, vol. 6, pp. 474-482, 2011. [23] D. V. Buonomano and M. Merzenich, 'A neural network model of temporal code generation and position-invariant pattern recognition,' Neural computation, vol. 11, pp. 103-116, 1999. [24] J. Hu, H. Tang, K. C. Tan, H. Li, and L. Shi, 'A spike-timing-based integrated model for pattern recognition,' Neural computation, vol. 25, pp. 450-472, 2013. [25] Q. Yu, K. C. Tan, and H. Tang, 'Pattern recognition computation in a spiking neural network with temporal encoding and learning,' in Neural Networks (IJCNN), The 2012 International Joint Conference on, 2012, pp. 1-7. [26] G. B. Moody and R. G. Mark, 'The impact of the MIT-BIH arrhythmia database,' Engineering in Medicine and Biology Magazine, IEEE, vol. 20, pp. 45-50, 2001. [27] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., 'Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals,' Circulation, vol. 101, pp. e215-e220, 2000. [28] National Taiwan University Telehealth Center, unpublished [29] B. B. Rob MacLeod 'ECG Measurement and Analysis.' Available: http://www.sci.utah.edu/~macleod/bioen/be6000/labnotes/ecg/l3-ecg.pdf [30] Medical Education-Health Encyclopedia Available: http://www.medicotips.com/2010/11/long-qt-syndrome-causes-mechanism.html [31] dgiO2 Cardio Care ECG/EKG Recorder http://www.digio2.com/product.php?item=18&f_item=4 [32] J.-S. Wang, W.-C. Chiang, Y.-L. Hsu, and Y.-T. C. Yang, 'ECG Arrhythmia Classification Using a Probabilistic Neural Network with a Feature Reduction Method,' Neurocomputing, 2012. [33] R. Benzid, F. Marir, and N.-E. Bouguechal, 'Quality-controlled compression method using wavelet transform for electrocardiogram signals,' International Journal of Biomedical Sciences, vol. 1, pp. 1306-1216, 2006. [34] J. H. O'Keefe, S. Hammill, M. Freed, and S. Pogwizd, The ECG criteria book: Jones & Bartlett Learning, 2010. [35] S. Bohte, H. La Poutre, and J. Kok, 'Spike-prop: error-backprogation for networks of spiking neurons,' Neurocomputing, vol. 48, pp. 17-37, 2002. [36] H. Fang, Y. Wang, and J. He, 'Spiking neural networks for cortical neuronal spike train decoding,' Neural computation, vol. 22, pp. 1060-1085, 2010. [37] H. H. Haseena, A. T. Mathew, and J. K. Paul, 'Fuzzy clustered probabilistic and multi layered feed forward neural networks for electrocardiogram arrhythmia classification,' Journal of Medical Systems, vol. 35, pp. 179-188, 2011. [38] B. M. Asl, S. K. Setarehdan, and M. Mohebbi, 'Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal,' Artificial intelligence in medicine, vol. 44, pp. 51-64, 2008. [39] R. Ceylan and Y. Ozbay, 'Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network,' Expert Systems with Applications, vol. 33, pp. 286-295, 2007. [40] S.-N. Yu and K.-T. Chou, 'Integration of independent component analysis and neural networks for ECG beat classification,' Expert Systems with Applications, vol. 34, pp. 2841-2846, 2008. [41] S.-N. Yu and K.-T. Chou, 'Selection of significant independent components for ECG beat classification,' Expert Systems with Applications, vol. 36, pp. 2088-2096, 2009. [42] K. Polat and S. Guneş, 'Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine,' Applied Mathematics and Computation, vol. 186, pp. 898-906, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58865 | - |
| dc.description.abstract | 類神經網路(Artificial Neural Network)屬於機器學習的一種,為模仿人腦的神經系統所建構的簡化模型。由於人腦具有學習的功能,並且在對於視覺、聽覺處理方面皆有很好的表現,人們預期透過模擬人腦的行為可以帶給電腦相同的能力,使電腦得以協助處理辨認或自動化分類等工作。在類神經網路被廣泛運用在各領域之後,近年來更結合腦神經科學發展出了更加貼近生理機制的脈衝類神經網路,將訊息以脈衝序列形式傳遞,並且模擬神經元胞體膜電位的改變,一來提高網路運算和分類的能力,一來也和人腦運作方式更加接近,目前多被使用在生理機制的探討上,在工程上的應用並不是很多。
本研究提出以脈衝類神經網路為基底的波形分類架構,以分類心電圖為應用,探討編碼方式以及脈衝類神經網路中神經元的運作,並且修改現有Tempotron學習演算法而提高分類預測能力,在MIT-BIH資料庫以及實際的資料庫:台大醫院遠距照護中心資料測試上皆有不錯的表現。我們提出了脈衝類神經網路的新應用,並且證明了脈衝類神經網路的分類預測能力以及潛力。 | zh_TW |
| dc.description.abstract | Artificial neural network is a kind of machine learning tools; it’s a simplified model of the brain, imitating biological neural networks. The human brain is able to learn from experience, and has good performance on visual and audio signal processing. By imitating human brain neural networks, people expect to bring computers the same ability as human that can help people to solve various problems. Combined with neuroscience knowledge, a more physiological meaningful tool, spiking neural network, has been created. The spiking neural network transmits information by spike trains and imitates the membrane potential function of neurons. Hence spiking neural network has the better performance on classification and prediction, and the work function is more similar to the human brain. Now spiking neural network is used for neuroscience simulation and machine learning application. However, there are few machine learning applications of spiking neural network.
This study designed a spiking neural network based waveform classification structure with an application of arrhythmia pattern recognition. There was discussion of encoding methods and functionality of spiking neurons. Furthermore, we modified the Tempotron algorithm to improve the accuracy of prediction. At last, we got the good performance in the tests of MIT-BIH arrhythmia database and NTUH telehealth database. This study proposed a new application of spiking neural networks and proved the ability and potential of spiking neural networks. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:35:31Z (GMT). No. of bitstreams: 1 ntu-102-R00942104-1.pdf: 4278412 bytes, checksum: 4ed1c99f821e0b33429daae08792f2d3 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書...................................................i
誌謝.............................................................iii 摘要..............................................................iv ABSTRACT...........................................................v 目錄.............................................................vii 圖目錄............................................................ix 表目錄............................................................xi 1. 第一章 緒論.....................................................1 1.1 研究動機與目的...............................................1 1.2 論文架構.....................................................2 2. 第二章 脈衝類神經網路...........................................3 2.1 人腦的神經網路...............................................3 2.2 類神經網路...................................................5 2.3 脈衝類神經網路...............................................8 2.3.1脈衝類神經網路的神經元模型............................9 2.3.2脈衝類神經網路的編碼.................................11 2.3.3脈衝類神經網路的學習機制.............................13 2.4文獻回顧:脈衝類神經網路的應用...............................15 3. 第三章 心電圖簡介..............................................18 3.1心電圖原理與使用............................................18 3.2心電圖之特徵和判讀..........................................20 3.3心電圖資料庫................................................22 4. 第四章 心電圖分類之脈衝類神經網路架構設計......................26 4.1脈衝類神經網路架構..........................................26 4.2 QRS波形輸入與脈衝編碼......................................28 4.3 QRS波形特徵辨識架構之隱藏層運作............................33 4.4 RR間期特徵輸入與編碼.......................................38 4.5輸出層與訓練演算法..........................................39 4.5.1 Tempotron學習演算法.................................40 4.5.2改進Tempotron訓練演算法.............................42 4.6 網路架構參數設定...........................................50 5. 第五章 實驗結果與討論..........................................58 5.1 MIT-BIH心律不整資料庫測試..................................58 5.2台大醫院遠距照護中心資料庫測試..............................64 6. 第六章 結論與展望..............................................66 6.1 結論.......................................................66 6.2 未來展望 參考文獻...........................................................69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 脈衝類神經網路 | zh_TW |
| dc.subject | Tempotron學習演算法 | zh_TW |
| dc.subject | 心電圖 | zh_TW |
| dc.subject | 波形分類 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Tempotron | en |
| dc.subject | Artificial Neural Network | en |
| dc.subject | Spiking Neural Network | en |
| dc.subject | Machine Learning | en |
| dc.subject | Electrocardiography | en |
| dc.subject | Waveform Classification | en |
| dc.title | 以心電圖辨識為應用之脈衝類神經網路波形分類架構 | zh_TW |
| dc.title | Spiking Neural Network Based Waveform Classification Structure with an Application on Arrhythmia Pattern Recognition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 闕志達(Tzi-Dar Chiueh),吳安宇(An-Yeu Wu),蔡孟利(Meng-Li Tsai),洪啟盛(Chi-Sheng Hung) | |
| dc.subject.keyword | 類神經網路,脈衝類神經網路,Tempotron學習演算法,心電圖,波形分類,機器學習, | zh_TW |
| dc.subject.keyword | Artificial Neural Network,Spiking Neural Network,Tempotron,Electrocardiography,Waveform Classification,Machine Learning, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-11-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
