請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5885完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉佩玲(Pei-Ling Liu) | |
| dc.contributor.author | Pin-Chiao Lin | en |
| dc.contributor.author | 林品喬 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:18:02Z | - |
| dc.date.available | 2016-08-26 | |
| dc.date.available | 2021-05-16T16:18:02Z | - |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | 1. A.Agresti,”An Introduction to Categorical Data Analysis” ,Wiley-Interscience,America,1996
2. Chien-Cheng Li,Yung-Yaw Chen,”Human Posture Recognition by Simple Rules”,IEEE,2006 3. Gordon A. Vos,Jerome J. Congleton,J. Steven Moore,Alfred A. Amendola,Larry Ringer,” Postural versus chair design impacts upon interface pressure”,Elsevier,Applied Ergonomics 37,619-628,2006 4. Guodong Chen,Qun Wu,Zhongliang Yang,”Comfort Research of Pressure Distribution on Assistive Chair” ,IEEE,2009 5. Hisataka Nakane,Jun Toyama ,Mineichi Kudo,”Fatigue Detection Using a Pressure Sensor Chair”,IEEE,2011 6. Hong Z. Tan,Lynne A. Slivovsky,Alex Pentland,”A Sensing Chair Using Pressure Distribution Sensors”,IEEE,2001 7. Hyun Jae Baek,Gih Sung Chung,Ko Keun Kim,Kwang Suk Park,”A Smart Health Monitoring Chair for Nonintrusive Measurement of Biological Signals”,IEEE,2012 8. Jianjun Zhao,Yi Wei,Shihong Xia,Zhaoqi Wang,”Estimating Human Body Segment Parameters Using Motion Capture Data”,IEEE,2010 9. Juergen Gall,Carsten Stoll,Edilson de Aguiar,Christian Theobalt,Bodo Rosenhahn, Hans-Peter Seidel,BIWI,”Motion Capture Using Joint Skeleton Tracking and Surface Estimation” ,IEEE,2009 10. Jun Ohya,Fumio Kishino,”Human Posture Estimation from Multiple Images Using Genetic Algorithm” ,IEEE,1997 11. Kazutaka Kurihara,Shin'ichiro Hoshino,Katsu Yamane,Yoshihiko Nakamura,”Optical Motion Capture System with Pan-Tilt Camera Tracking and Realtime Data Processing”,IEEE,2002 12. Ko Keun Kim,Yong Kyu Lim,Kwang Suk Park,”Common Mode Noise Cancellation for Electrically Non-Contact ECG Measurement System on a Chair”,IEEE,2005 13. M. A. Adamsc,W. C. Hutton,”The Effect of Posture on The Lumbar Spine”,The Journal of Bone And Joint Surgery,Vol 67-B.N0 4,Augest ,1985 14. M. Yamada, K. Kamiya,M. Kudo,H. Nonaka,J. Toyama,” Soft authentication and behavior analysis using a chair with sensors attached: hipprint authentication”,Pattern Anal Applic,,2009,12:251–260 15. Nan Liang,Lei Guo,Ying Wang,”An Approach on Characteristic Lines Extracting of Gray Images Using Moment of Inertia”,IEEE,2010 16. Sam Murphy,Peter Buckle,Dave Stubbs,”The Use of The Portable Ergonomic Observation Method (PEO) to Monitor The Sitting Posture of Schoolchildren in The Classroom”,Elsevier,Applied Ergonomics 33,365-370,2002 17. Shinsuke Yoshioka,Akinori Nagano,Ryutaro Himeno,Enshi Fukashiro,”Computation of The Kinematics And The Minimum Peak Joint Moments of Sit-to-stand Movements”,BioMed Central,July ,2007 18. Yue Li,Rachid Aissaoui,”Smart Sensor, Smart Chair, Can it Predicts Your Sitting Posture”,IEEE,2006 19. J. M. Gere著,林震,劉興華,蘇金佳譯,材料力學,台北市,臺灣東華書局股份有限公司,2005 20. R. C. Gonzalez,R. E. Woods, Steven L. Eddins,繆紹綱譯,數位影像處理: 運用MATLAB,臺北市,臺灣東華書局股份有限公司,2005 21. 王進德,蕭大全,類神經網路與模糊控制理論入門,台北市,全華圖書有限公司,2005 22. 李繼生,李遠略,慣性矩與慣性積的圖解法,河南理工大學學報,第29卷第四期,八月,2010 23. 周鵬程,類神經網路入門,臺北市,全華圖書有限公司,2006 24. 桑慧敏,機率與推導統計原理,台北市,高立圖書出版社,2008 25. 張元翔,運用視訊中人體特徵點追蹤與定位之代理人同部系統,中原大學資訊工程學系碩士論文,2007 26. 張東明,影像處理於加工定位之應用,國立台灣大學機械工程研究所碩士論文,1995 27. 張斐章,張麗秋,類神經網路導論:原理與應用,台中,滄海書局, 2010 28. 張德豐,MATLAB神經網絡編程,北京,化學工業出版社,2011 29. 黃奕銘,以類神經網路為最佳化途徑來完成影像強化,國立台灣大學電機電信電子產業研究所碩士論文, 2007 30. 黃鴻鈞,利用類神經網路於輔助膝蓋動脈血管之MRA影像辨識,國立台灣大學電機工程研究所碩士論文, 2005 31. 羅建民,剪力波速評估土壤液化潛能:模糊類神經網路,國立台灣大學土木工程研究所碩士論文,2003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5885 | - |
| dc.description.abstract | 本研究之目的在於使用人體影像進行坐姿的判讀。利用相機拍攝人體坐姿影像,以正規化與高斯濾波法消除背景,之後進行二元化處理。為避免坐姿的判讀會受到影響,嘗試將圖形中小腿刪除後之結果視為第一類目標圖型,將手與下半身刪除的結果視為第二類目標圖型。計算目標圖型的特徵參數-慣性矩(moment of inertia)與慣性積(product of inertia),並將參數輸入倒傳遞類神經網路(Back Propagation Neural Networks,BPNN)進行分析運算,最後再將網路輸出值透過分類器來判讀坐姿。
本研究中有10位受試者,共拍攝708張坐姿影像,其中屬於坐姿正的影像有317張,屬於坐姿不正的影像有391張。隨機挑選其中388張坐姿影像訓練類神經網路,剩餘的320張坐姿影像則進行後來的測試。其測試結果中第一類目標圖型之靈敏度(sensitivity)為80%,準確率(accuracy)為79.38%;第二類目標圖型之靈敏度(sensitivity)為78.13%,準確率(accuracy)為82.82%。因此由本研究的結果可知,以慣性矩與慣性積作為圖形特徵參數所建立起的坐姿判讀法具有辨識坐姿好壞的能力。 | zh_TW |
| dc.description.abstract | The purpose of this study is to identify human sitting postures by using images. We use camera to capture the body's sitting images, remove the background by image normalization and Gaussian Smoothing filter, and then make images binaries. To avoid the identification of sitting postures being affected, we try to remove lower leg of posture images for first target pattern, remove hands and lower body for second target pattern. We calculate the target patterns characteristic parameters - moment of inertia and product of inertia, and then we make those parameters input back-propagation neural network (BPNN) for analysis and computing, finally, the output value of neural network through a classifier to identify the sitting postures.
In this study, there are 10 subjects and 708 sitting images, which belong to the good posture were 317 images, belong to the bad posture were 391 images. Randomly selected 388 sitting images to train the neural network, the remaining 320 sitting images do test later. The test results of the images of first target pattern, the sensitivity is 80%, and the accuracy is 79.38%; the sensitivity of second target pattern is 78.13%,and the accuracy is 82.82%. From the results of this study, the posture identify system which we set up by using moment of inertia and product of inertia has the ability to recognize good and bad posture. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:18:02Z (GMT). No. of bitstreams: 1 ntu-102-R00543018-1.pdf: 5370491 bytes, checksum: 9153e864a2b86750412ea42b976f0332 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 IV 英文摘要 V 目錄 VI 圖目錄 VII 表目錄 X 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究內容 4 第二章 影像處理 7 2-1去除背景 7 2-2高斯平滑濾波 9 2-3 擷取目標圖型 12 第三章 類神經網路 32 3-1 生物神經網路 33 3-2 類神經網路學習演算法 38 3-1-1類神經網路系統架構 41 3-1-2類神經網路學習演算法 43 3-3倒傳遞類神經網路 68 3-3-1權重修正公式 68 3-3-2圖形特徵參數 74 3-3-2隱藏層層數與神經元數量 77 第四章 判斷分類器 104 第五章 坐姿判定之實驗分析與討論 114 5-1 受試者與受試環境介紹 114 5-2 實驗流程與結果 114 5-3 實驗討論 116 第六章 結論與未來展望 138 參考文獻 141 | |
| dc.language.iso | zh-TW | |
| dc.subject | 倒傳遞類神經網路 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 慣性矩 | zh_TW |
| dc.subject | 慣性積 | zh_TW |
| dc.subject | image processing | en |
| dc.subject | Back Propagation Neural Networks | en |
| dc.subject | product of inertia | en |
| dc.subject | moment of inertia | en |
| dc.subject | neural network | en |
| dc.title | 利用影像處理與類神經網路進行人體坐姿判讀 | zh_TW |
| dc.title | Using Image Processing and Artificial Neural Networks to Identify Human Sitting Postures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 毛慧芬,梅興 | |
| dc.subject.keyword | 影像處理,類神經網路,慣性矩,慣性積,倒傳遞類神經網路, | zh_TW |
| dc.subject.keyword | image processing,neural network,moment of inertia,product of inertia,Back Propagation Neural Networks, | en |
| dc.relation.page | 144 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 5.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
