Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫(Lon A. Wang)
dc.contributor.authorTsung-Han Shenen
dc.contributor.author沈宗翰zh_TW
dc.date.accessioned2021-06-16T08:35:06Z-
dc.date.available2017-01-01
dc.date.copyright2013-11-27
dc.date.issued2013
dc.date.submitted2013-11-23
dc.identifier.citation[1] K. C. Kao and G. A. Hockham, 'Dielectric-fibre surface waveguides for optical frequencies,' IEE Proc. J., vol. 113, pp. 1151–1158, 1966.
[2] G. Keiser, Optical Fiber Communications. McGraw-Hill Companies, 2010.
[3] M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers. CRC Press, 2001.
[4] R. Kashyap, Fiber Bragg Gratings. Academic Press, 2009.
[5] E. Udd and W. B. Spillman Jr., Fiber Optic Sensors: An Introduction for Engineers and Scientists. John Wiley & Sons, 2011.
[6] R. H. Stolen and R. P. De Paula, 'Single-mode fiber components,' Proc. IEEE, vol. 75, pp. 1498–1511, 1987.
[7] J.-P. Goure, I. Verrier, and J.-P. Meunier, 'Linear and nonlinear optical fibre devices,' J. Phys. D-Appl. Phys., vol. 22, pp. 1791–1805, 1989.
[8] P. Matthijsse and W. Griffioen, 'Matching optical fiber lifetime and bend-loss limits for optimized local loop fiber storage,' Opt. Fiber Technol., vol. 11, pp. 92–99, 2005.
[9] P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, 'Investigation of macrobending losses of standard single mode fiber with small bend radii,' Microw. Opt. Technol. Lett., vol. 49, pp. 2133–2138, 2007.
[10] N. G. R. Broderick, 'Optical Snakes and Ladders: Dispersion and nonlinearity in microcoil resonators,' Opt Express, vol. 16, pp. 16247-16254, 2008.
[11] G. Brambilla, 'Optical fibre nanotaper sensors,' Opt Fiber Technol, vol. 16, pp. 331-342, 2010.
[12] J. Scheuer, 'Fiber microcoil optical gyroscope,' Opt Lett, vol. 34, pp. 1630-1632, 2009.
[13] F. Xu, P. Horak, and G. Brambilla, 'Optical microfiber coil resonator refractometric sensor,' Opt Express, vol. 15, pp. 7888-7893, 2007.
[14] N. G. R. Broderick and T. T. Ng, 'Theoretical Study of Noise Reduction of NRZ Signals Using Nonlinear Broken Microcoil Resonators,' IEEE Photonic Tech L, vol. 21, pp. 444-446, 2009.
[15] M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, 'The microfiber loop resonator: Theory, experiment, and application,' J Lightwave Technol., vol. 24, pp. 242-250, 2006.
[16] L. M. Tong, X. Guo, Y. H. Li, and X. S. Jiang, 'Demonstration of critical coupling in microfiber loops wrapped around a copper rod,' Appl Phys Lett, vol. 91, 2007.
[17] T. A. Birks and L. M. Xiao, 'High finesse microfiber knot resonators made from double-ended tapered fiber,' Opt. Lett, vol. 26, pp. 1098-1100, 2011.
[18] M. Sumetsky, 'Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators,' J Lightwave Technol, vol. 26, pp. 21-27, 2008.
[19] M. Sumetsky, 'Optical fiber microcoil resonator,' Opt Express, vol. 12, pp. 2303-2316, 2004.
[20] L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers. Springer, 2010.
[21] G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, 'Optical fiber nanowires and microwires: Fabrication and applications,' Adv. Opt. Photon., vol. 1, pp. 107–161, 2009.
[22] G. Brambilla, 'Optical fibre nanowires and microwires: A review,' J. Opt., vol. 12, p. 043001, 2010.
[23] J. Scheuer and M. Sumetsky, 'Optical‐fiber microcoil waveguides and resonators and their applications for interferometry and sensing,' Laser Photon. Rev., vol. 5, pp. 465–478, 2011.
[24] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, 'Subwavelength-diameter silica wires for low-loss optical wave guiding,' Nature, vol. 426, pp. 816–819, 2003.
[25] L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, 'Self-modulated taper drawing of silica nanowires,' Nanotechnology, vol. 16, pp. 1445–1448, 2005.
[26] L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, 'Photonic nanowires directly drawn from bulk glasses,' Opt. Express, vol. 14, pp. 82–87, 2006.
[27] T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, 'Carbon dioxide laser fabrication of fused-fiber couplers and tapers,' Appl. Opt., vol. 38, pp. 6845–6848, 1999.
[28] M. Sumetsky, Y. Dulashko, and A. Hale, 'Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,' Opt. Express, vol. 12, pp. 3521–3531, 2004.
[29] J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, 'Heat-and-pull rig for fiber taper fabrication,' Rev. Sci. Instrum., vol. 77, pp. 083105–083105–5, 2006.
[30] G. Brambilla, V. Finazzi, and D. Richardson, 'Ultra-low-loss optical fiber nanotapers,' Opt. Express, vol. 12, pp. 2258–2263, 2004.
[31] S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, 'Supercontinuum generation in submicron fibre waveguides,' Opt. Express, vol. 12, pp. 2864–2869, 2004.
[32] Y. Lize, E. Magi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, 'Microstructured optical fiber photonic wires with subwavelength core diameter,' Opt. Express, vol. 12, pp. 3209–3217, 2004.
[33] D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, 'Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,' Appl. Phys. Lett., vol. 93, pp. 081106–081106–3, 2008.
[34] S.-Y. Chou, K.-C. Hsu, N.-K. Chen, S.-K. Liaw, Y.-S. Chih, Y. Lai, and S. Chi, 'Analysis of thermo-optic tunable dispersion-engineered short-wavelength-pass tapered-fiber filters,' J. Lightwave Technol., vol. 27, pp. 2208–2215, 2009.
[35] G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, 'Compound-glass optical nanowires,' Electron. Lett., vol. 41, pp. 400–402, 2005.
[36] E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, 'Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,' Opt. Express, vol. 15, pp. 10324–10329, 2007.
[37] L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, 'Ultralow loss single-mode silica tapers manufactured by a microheater,' Appl. Opt., vol. 49, pp. 2441–2445, 2010.
[38] S. Hopland, 'Characteristics of the etching of undoped silica in MCVD-fabricated optical fibers with buffered hydrofluoric acid,' Mater. Res. Bull., vol. 20, pp. 1367–1372, 1985.
[39] E. J. Zhang, W. D. Sacher, and J. K. S. Poon, 'Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,' Opt. Express, vol. 18, pp. 22593–22598, 2010.
[40] H. J. Kbashi, 'Fabrication of submicron-diameter and taper fibers using chemical etching,' J. Mater. Sci. Technol., vol. 28, pp. 308–312, 2012.
[41] G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. J. Russell, 'Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,' Opt. Lett., vol. 26, pp. 1137–1139, 2001.
[42] Y. Jung, G. Brambilla, and D. J. Richardson, 'Optical microfiber coupler for broadband single-mode operation,' Opt. Express, vol. 17, pp. 5273–5278, 2009.
[43] X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, 'Demonstration of optical microfiber knot resonators,' Appl. Phys. Lett., vol. 88, pp. 223501–223501–3, 2006.
[44] S.-S. Wang, Z.-F. Hu, Y.-H. Li, and L.-M. Tong, 'All-fiber Fabry–Perot resonators based on microfiber Sagnac loop mirrors,' Opt. Lett., vol. 34, pp. 253–255, 2009.
[45] X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, 'Demonstration of microfiber knot laser,' Appl. Phys. Lett., vol. 89, pp. 143513–143513–3, 2006.
[46] J. M. Ward, P. Feron, and S. N. Chormaic, 'A taper-fused microspherical laser source,' IEEE Photonics Technol. Lett., vol. 20, pp. 392–394, 2008.
[47] Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, 'Nanowires/microfiber hybrid structure multicolor laser,' Opt. Express, vol. 17, pp. 21813–21818, 2009.
[48] X. Jiang, Y. Chen, G. Vienne, and L. Tong, 'All-fiber add-drop filters based on microfiber knot resonators,' Opt. Lett., vol. 32, pp. 1710–1712, 2007.
[49] Y. Jung, G. Brambilla, and D. J. Richardson, 'Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,' Opt. Express, vol. 16, pp. 14661–14667, 2008.
[50] Y. Chen, Z. Ma, Q. Yang, and L.-M. Tong, 'Compact optical short-pass filters based on microfibers,' Opt. Lett., vol. 33, pp. 2565–2567, 2008.
[51] M. Sumetsky, Y. Dulashko, and S. Ghalmi, 'Fabrication of miniature optical fiber and microfiber coils,' Opt. Lasers Eng., vol. 48, pp. 272–275, 2010.
[52] Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, 'Embedded optical microfiber coil resonator with enhanced high-Q,' IEEE Photonics Technol. Lett., vol. 22, pp. 1638–1640, 2010.
[53] Y.-C. Hsieh, T.-S. Peng, and L. A. Wang, 'Millimeter-sized microfiber coil resonators with enhanced quality factors by increasing coil numbers,' IEEE Photonics Technol. Lett., vol. 24, pp. 569–571, 2012.
[54] X. Zhang, M. Belal, G. Y. Chen, Z. Song, G. Brambilla, and T. P. Newson, 'Compact optical microfiber phase modulator,' Opt. Lett., vol. 37, pp. 320–322, 2012.
[55] W. Ding and S. R. Andrews, 'Modal coupling in surface-corrugated long-period-grating fiber tapers,' Opt. Lett., vol. 33, pp. 717–719, 2008.
[56] H. Xuan, W. Jin, and M. Zhang, 'CO2 laser induced long period gratings in optical microfibers,' Opt. Express, vol. 17, pp. 21882–21890, 2009.
[57] H. Xuan, W. Jin, and S. Liu, 'Long-period gratings in wavelength-scale microfibers,' Opt. Lett., vol. 35, pp. 85–87, 2010.
[58] C.-L. Lee, Z.-Y. Weng, C.-J. Lin, and Y. Lin, 'Leakage coupling of ultrasensitive periodical silica thin-film long-period grating coated on tapered fiber,' Opt. Lett., vol. 35, pp. 4172–4174, 2010.
[59] M. Ding, M. N. Zervas, and G. Brambilla, 'A compact broadband microfiber Bragg grating,' Opt. Express, vol. 19, pp. 15621–15626, 2011.
[60] F. Xu and G. Brambilla, 'Manufacture of 3-D microfiber coil resonators,' IEEE Photonics Technology Letters, vol. 19, pp. 1481-1483, 2007.
[61] Y. C. Hsieh, T. S. Peng, and L. A. Wang, 'Millimeter-Sized Microfiber Coil Resonators with Enhanced Quality Factors by Increasing Coil Numbers' Photonic Tech Lett, vol. 24, pp. 569-571, 2012.
[62] L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, 'Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,' Opt. Express, vol. 16, pp. 13349–13353, 2008.
[63] C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, 'Quantum‐dot‐doped polymer nanofibers for optical sensing,' Adv. Mater., vol. 23, pp. 3770–3774, 2011.
[64] Y. Wu, T. Zhang, Y. Rao, and Y. Gong, 'Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,' Sens. Actuator B-Chem., vol. 155, pp. 258–263, 2011.
[65] F. Gu, L. Zhang, X. Yin, and L. Tong, 'Polymer single-nanowire optical
sensors, ' Nano Lett. vol.8, pp.2757–2761, 2008.
[66] George Yuhui Chen, Timothy Lee, Rand Ismaeel, Gilberto Brambilla, and Trevor Peter Newson, 'Resonantly Enhanced Faraday Rotation in an Microcoil Current Sensor,' IEEE Photonics Technology Letters, vol. 24, pp. 860-862, 2012.
[67] G. Brambilla, 'Optical fibre nanotaper sensors,' Opt. Fiber Technol., vol. 16, pp. 331–342, 2010.
[68] G. Brambilla, F. Xu, and X. Feng, 'Fabrication of optical fibre nanowires and their optical and mechanical characterisation,' Electron. Lett., vol. 42, pp. 517–519, 2006.
[69] Y. Li and L. Tong, 'Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,' Opt. Lett., vol. 33, pp. 303–305, 2008.
[70] R. Chen, 'Recent advances in polymer and silicon nanophotonics,' in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, 2008, p. OMJ4.
[71] B. Jalali and S. Fathpour, 'Silicon photonics,' J. Lightwave Technol., vol. 24, pp. 4600–4615, 2006.
[72] N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, 'Development of CMOS-compatible integrated silicon photonics devices,' IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 1688–1698, 2006.
[73] L. Eldada and L. W. Shacklette, 'Advances in polymer integrated optics,' IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 54–68, 2000.
[74] A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, 'A novel fabrication technology of a polymer optical waveguide and its application,' Proc. SPIE, vol. 6775, pp. 677506–677506–12, 2007.
[75] G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, 'Resonantly enhanced Faraday rotation in an microcoil current sensor,' IEEE Photonics Technol. Lett., vol. 24, pp. 860–862, 2012.
[76] J. Blyler, L.L. and F. V. DiMarcello, 'Fiber drawing, coating, and jacketing,' Proc. IEEE, vol. 68, pp. 1194–1198, 1980.
[77] U. Paek, 'High-speed high-strength fiber drawing,' J. Lightwave Technol., vol. 4, pp. 1048–1060, 1986.
[78] U. C. Paek, 'Free drawing and polymer coating of silica glass optical fibers,' J. Heat Transfer, vol. 121, pp. 774–788, 1999.
[79] U. C. Paek and R. B. Runk, 'Physical behavior of the neck‐down region during furnace drawing of silica fibers,' J. Appl. Phys., vol. 49, pp. 4417–4422, 1978.
[80] Z. Yin and Y. Jaluria, 'Neck down and thermally induced defects in high-speed optical fiber drawing,' J. Heat Transfer, vol. 122, pp. 351–362, 2000.
[81] K. Imoto, M. Sumi, G. Toda, and T. Suganuma, 'Optical fiber drawing method with gas flow controlling system,' J. Lightwave Technol., vol. 7, pp. 115–121, 1989.
[82] S. Roy Choudhury and Y. Jaluria, 'Thermal transport due to material and gas flow in a furnace for drawing an optical fiber,' J. Mater. Res., vol. 13, pp. 494–503, 1998.
[83] C. Jochem and J. van der Ligt, 'Cooling and bubble-free coating of optical fibers at a high drawing rate,' J. Lightwave Technol., vol. 4, pp. 739–742, 1986.
[84] S. Sakaguchi and T. Kimura, 'High-speed drawing of optical fibers with pressurized coating,' J. Lightwave Technol., vol. 3, pp. 669–673, 1985.
[85] P. L. Chu, T. Whitbread, and P. M. Allen, 'An on-line fiber drawing tension and diameter measurement device,' J. Lightwave Technol., vol. 7, pp. 255–261, 1989.
[86] C. G. Askins, M. A. Putnam, and E. J. Friebele, 'Noncontact measurement of optical fiber draw tension,' J. Lightwave Technol., vol. 9, pp. 945–947, 1991.
[87] W. H. Yang, Y. S. Tarng, 'Design optimization of cutting parameters for turning operations based on the Taguchi method', Journal of Material Processing Technology, vol. 84, pp. 122–129, 1998.
[88] Taguchi G, Introduction to quality engineering, Asian Productivity Organization, Tokyo, 1990.
[89] Taguchi G, Hocheng, 'Taguchi methods orthogonal arrays and linear graphs, tools for quality engineering', Dearborn, MI: American Supplier Institute, pp. 35 – 38, 1987.
[90] M. Ibsen, M. K. Durkin, R. Feced, M. J. Cole, M. N. Zervas, and R. I. Laming, 'Dispersion compensating fibre Bragg gratings,' Proceedings of SPIE, vol. 4532, pp. 540-551, 2001.
[91] A. W. Snyder, 'Coupled-Mode Theory for Optical Fibers,' Journal of the Optical Society of America, vol. 62, pp. 1267-1277, 1972.
[92] M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express , vol. 17, pp. 7196–7205, 2009.
[93] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, 'Rayleigh scattering in high-Q microspheres,' Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1051-1057, 2000.
[94] F. Xu, P. Horak, and G. Brambilla, 'Optimized design of microcoil resonators,' Journal of Lightwave Technology, vol. 25, pp. 1561-1567, 2007.
[95] S. M. Chuo and L. A. Wang, 'Propagation loss, degradation and protective coating of long drawn microfibers,' Optics Communications, vol. 284, pp. 2825-2828, 2011.
[96] S. S. Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, 'Etched multimode microfiber knot-type loop interferometer refractive index sensor,' Review of Scientific Instruments, vol. 82, 2011.
[97] A. Suzuki and S. Narusue, 'Isotactic polypropylene microfiber prepared by carbon dioxide laser-heating,' Journal of Applied Polymer Science, vol. 92, pp. 1534-1539, 2004.
[98] C. Ma, L. Ren, and Y. Xu, 'Slow-light element for tunable time delay based
on optical microcoil resonator,' Appl. Opt., vol. 51, pp. 6295-6300, 2012.
[99] C. Y. Chao and L. J. Guo, 'Design and optimization of microring resonators in biochemical sensing applications,' Journal of Lightwave Technology, vol. 24, pp. 1395-1402, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58858-
dc.description.abstract在本論文中,首先我們介紹了改良的小型化光纖拉絲塔。使用氫氧焰做為熱源,提供了足夠高的溫度來進行光纖拉絲,並透過壓克力罩來減少空氣擾動和污染。在幾組氣體流量控制閥的調節下,嚴格地控制氫氧焰的氣體流量,也確保了熱源穩定的輸定。藉由環境和熱源的穩定,我們成功將直徑2微米微光纖的傳輸損耗降低為0.0015 dB/cm,大大減少了抽絲過程中微光纖錐體結構的變形曲折,這種變形曲折會使微光纖損耗大量增加,是製作超低損耗的微光纖所不願見到的。改良後的微光纖在10.5毫米的長度內,最大的直徑變化量(△D)約為10 nm,其△D/L∼1×10-6,可媲美甚至優於世界上其他團隊的記錄。此外改良後的微光纖的半徑的相對變化∼5×10-4/毫米,這是目前在世界上的最佳記錄。如此的相對變化量其數量級幾乎和傳統的單模光纖相同。此外,我們運用了田口玄一法分析了在微光纖拉絲實驗中各參數的影響,發現在將微光纖抽細的實驗中,抽絲時間是影響最顯著的參數。
接下來,我們展示許多微光纖線圈共振腔的實驗架構。透過具有超長工作距離的物鏡和CCD感光元件的使用,我們可以動態觀測繞線的整個過程。即時觀測有助於在繞線過程中儘早檢測出錯誤。此外,因為繞線系統具有良好的同心度和穩定性,使我們能夠確實地操控微光纖線圈共振腔上的微光纖,並準確地控制微光纖線圈共振腔上每圈之間的間隙。
本篇論文提出一種新型小型化的二層結構微光纖線圈共振腔。利用直徑3微米的微光纖繞在一個直徑1.8毫米毛細管上做成的二層結構三圈的微光纖線圈共振腔,其品質因數高達1,180,000。這種小型化的二層結構微光纖線圈共振腔具有極高的品質因素。可以在光纖感測和非線性光學領域找到有用的應用。
zh_TW
dc.description.abstractIn the beginning, a modified miniature fiber drawing tower is introduced. Hydrogen oxygen flame, a clean heat source, provided sufficiently high temperature needed for silica fiber drawing. We used a Plexiglas box to reduce the air turbulence and the contamination such as particles in the air and several sets of regulators to ensure the constant gas flow rates for uniform heating during the drawing process. These improvements successfully resulted in low-loss microfibers, ~ 0.0015 dB/cm for 2-μm-diameter microfibers and the bending of microfiber tapers was greatly reduced. The maximum diameter variation (△D) was about 10 nm over the 10.5 mm length (L) of the microfiber, leading to △D/L~1x10-6, comparable or even better than the records shown by other groups in the world. The relative variation of the microfiber radius was ~ 5x10-4 per mm, the best record ever reported for microfibers. Such a small variation of microfibers was nearly the same order of magnitude with regular single mode fibers. Besides, the influences of the process factors in fiber drawing were analyzed by using the Taguchi method, which concluded that the effect of drawing time was the most significant one.
Next, we show a lot of experimental setups for making MCRs. Due to the use of an ultra-long working distance objective and a CCD, we could dynamically observe the coiling process without re-focusing and record the images by video shooting. The capability of real-time observation helped us early detect the faults during coiling process. Besides, the coiling system achieved good concentricity and stability because the deviation from center point was less than 1 μm. We were able to manipulate the microfibers of the MCRs arbitrarily and control the gap accurately.
A novel and compact resonator with high-quality factor based on a two-layer microcoil resonator has been demonstrated in this thesis. For a two-layer MCR made from 3-μm diameter microfiber around a 1.8-mm diameter silica rod, a quality factor as high as 1,180,000 could be obtained by just only 3 turns. Such a miniature MCR with high Q-factor may find useful applications in optical fiber sensing and nonlinear optics.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:35:06Z (GMT). No. of bitstreams: 1
ntu-102-R00941015-1.pdf: 5810756 bytes, checksum: 570f791ce67def096d6dc4ebe6311a31 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………………………………………………………………#
誌謝…………………………………………………………………………………………………………………………………………………I
摘要……………………………………………………………………………………………………………………………………………III
ABSTRACT………………………………………………………………………………………………………………………………………V
CONTRIBUTIONS……………………………………………………………………………………………………………………VII
CONTENTS……………………………………………………………………………………………………………………………………IX
LIST OF FIGURES…………………………………………………………………………………………………………………XI
LIST OF TABLES…………………………………………………………………………………………………………………XIX
Chapter 1 Introduction…………………………………………………………………………………1
1.1 Motivation……………………………………………………………………………………………………………1
1.2 Literature Review…………………………………………………………………………………………4
1.2.1 Fabrication Methods……………………………………………………………………………………4
1.2.2 Microfiber-Based Devices………………………………………………………………………5
1.2.3 Sensor Applications……………………………………………………………………………………6
1.3 Organization of the Thesis………………………………………………………………22
Chapter 2 Optimization of Making Microfibers and Their Optical Properties…………………………………………………………………………………………………………23
2.1 Overview………………………………………………………………………………………………………………23
2.2 A Modified Miniature Fiber Drawing Tower…………………………26
2.3 Analysis of Fiber Drawing Parameters by Using Taguchi Method……………………………………………………………………………………………………………………34
2.4 Properties of the Microfibers Drawn from the Modified Miniature Fiber Drawing Tower……………………………………………………40
2.5 Summary…………………………………………………………………………………………………………………49
Chapter 3 Theory, Design, Fabrication and Experiments on Single-layer MCRs……………………………………………………………………………………………………50
3.1 Theory of MCRs………………………………………………………………………………………………50
3.2 Quality Factors of Resonators………………………………………………………54
3.3 Parameter Analysis of MCRs………………………………………………………………57
3.4 Fabrication and Setup of MCRs………………………………………………………65
3.5 Summary…………………………………………………………………………………………………………………81
Chapter 4 Principle, Fabrication and Optical Characteristics of Two-layer MCRs…………………………………………………………………82
4.1 Principle and Fabrication of Two-layer MCRs…………………82
4.2 Optical Characteristics of Two-layer MCRs………………………88
4.3 Summay…………………………………………………………………………………………………………………101
Chapter 5 Conclusions and Future Works…………………………………102
Reference
dc.language.isozh-TW
dc.subject低損耗zh_TW
dc.subject高品質因素zh_TW
dc.subject微光纖zh_TW
dc.subject線圈共振腔zh_TW
dc.subject光纖抽絲塔zh_TW
dc.subjectFiber Drawing Toweren
dc.subjectLow Lossen
dc.subjectHigh Quality Factoren
dc.subjectMicrofiberen
dc.subjectMicrofiber Coil Resonatorsen
dc.title利用超低傳輸損耗的微光纖製作具有高品質因素的兩層微光纖線圈共振腔zh_TW
dc.titleFabrication of Two-layer Microcoil Resonators with Very High Quality Factors by Using Ultra-low Propagation Loss Microfibersen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖顯奎(Shien-Kuei Liaw),黃念祖(Nien-Tsu Huang)
dc.subject.keyword微光纖,低損耗,光纖抽絲塔,線圈共振腔,高品質因素,zh_TW
dc.subject.keywordMicrofiber,Low Loss,Fiber Drawing Tower,Microfiber Coil Resonators,High Quality Factor,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2013-11-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved