請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58835
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王富正 | |
dc.contributor.author | Cheng-Yung Gao | en |
dc.contributor.author | 高誠勇 | zh_TW |
dc.date.accessioned | 2021-06-16T08:33:46Z | - |
dc.date.available | 2014-01-27 | |
dc.date.copyright | 2014-01-27 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-12-03 | |
dc.identifier.citation | [1] 國科會高瞻自然科學教學資源平台 http://case.ntu.edu.tw/hs/wordpress/?p=5097
[2] 台灣燃料電池資訊網 http://www.tfci.org.tw/Fc/class.asp [3] ARTC http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1640 [4] 衣寶廉 編著,黄朝榮、林修正 校訂,燃料電池-原理與應用 [5] 黃鎮江編著,燃料電池,修訂二版,全華圖書,2007。 [6] 溫武義編譯,燃料電池技術,全華圖書,2004。 [7] Brian C, “Introduction to fuel cells and hydrogen technology”, IEEE Proc, 205-16, 2002. [8] Larmine J and Dick A, Fuel Cell System Explained, Wiley, 2003. [9] Mehta V and Cooper JS, “Review and Analysis of PEM Fuel Cell Design and Manufacturing”, Journal of Power Source, 114(1), pp. 32-53, 2003. [10] Lee SJ, Mukerjee, Ticianelli EA and McBreen J, “Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cell”, Electrochim. Acta 44, pp. 3283-3293, 1999. [11] Clindrella L, Kannan AM, “Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells–A Review”, Journal of Power Source, 2009. [12] Ceraolo M, Miulli C and Pozio A, “Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description”, Journal of Power Sources, 113(1): pp. 131-144, 2003. [13] Wang FC, Yang YP, “System Identification and Robust Control of a Portable Proton Exchange Membrane Fuel-Cell System”, Journal of Power Sources, 164(2): pp. 704-712, 2007. [14] Van Overschee P and De Moor B, “N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems”, Automatica, 30(1): pp. 75-93, 1994. [15] 黃志偉,系統識別和 強韌控制在質子交換膜燃料電池上的應用,國立台灣 大學機械工程研究所碩士論文,2006。 [16] 陳炫綜,多變數強韌控制理論在質子交換膜燃料電池上的應用,國立台灣大學機械工程研究所博士論文,2009。 [17] 周銘城,質子交換膜燃料電池控制及整合,國立台灣大學機械工程研究所碩士論文,2009。 [18] Mocoteguy P, “Monodimensional Modeling and Experimental Study of the Dynamic Behavior of Proton Exchange Membrane Fuel Cell Stack Operating in Dead-End Mode”, Journal of Power Sources, 167(2): pp. 349-357, 2007. [19] Doyle JC, Francis BA and Tannenbaum AR, Feedback Control Theory, 1992. [20] Glover K and McFarlane DC, Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, 1989. [21] Georgiou TT and Smith MC, “Optimal Robustness in the Gap Metric”, Automatic Control, IEEE Transactions on, 35(6): pp. 673-686, 1990. [22] Wang FC, Chen HT, “Multivariable robust control of a proton exchange membrane fuel cell system”, Journal of Power Sources, 177(2): pp. 393-403, 2008. [23] Wang FC, Chen HT, “Design and Implementation of Fixed-Order Robust Controllers for a Proton Exchange Membrane Fuel Cell System”, International Journal of Hydrogen Energy, 34(6): pp. 2705-2717, 2009. [24] 流量計 www.alicatscientific.com [25] 維基百科 https://zh.wikipedia.org/wiki/Wikipedia [26] 台灣立凱電能科技股份有限公司http://www.aleees.com/ [27] 內田隆裕,圖解電池入門,世茂出版公司, 2010。 [28] 固態繼電器 http://www.kyotto.com/solid-state-relay.htm [29] 綠大國際電動車 http://www.lu-da.com.tw/index.php [30] 環球電動代步車 http://www.huanciou.com.tw/default.asp [31] 輝奇氣體有限公司 http://hueichyi.myweb.hinet.net/ [32] DC/DC 電壓轉換器 http://www.alibaba.com/detailerror [33] Mean Well公司 http://www.meanwell.com.tw/ch_index.html [34] 皓恆科技股份有限公司 http://www.biologictek.com.tw/ [35] Bunchi, F.N. and S. Srinivasan, “Operation Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases,” J. Electronchem. Soc., Vol. 144, No. 8, pp. 2767-2772, Aug. 1997. [36] Su, A., C.C. Sun, F.B. Weng, and Y.M. Chen, “Experimental Investigation of the Performance of a Signal Proton Exchange Membrane Fuel Cell Dry Fuel,” Experimental Heat Transfer, Taylor & Francis, pp. 97-109, 2003. [37] Amirinejad, M., S. Rowshanzamir, and M.H. Eikani, “Effects of Operating Parameters on Performance of a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 161: pp. 872-875 , 2006. [38] Bernardi, D.M. and M.W. Verbrugge, “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AiChE Journal, Vol. 137, No. 8, pp. 1151-1163, 1991. [39] Friede, W., “Mathematical Model and Characterization of the Transient Behavior of a PEM Fuel Cell,” IEEE Transactions on Power Electronics, Vol. 19, No.5, pp. 1234-1241, September 2004. [40] Pukrushpan, J.T. and H. Peng, et al., “Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 126(1): 14-25, 2004. [41] Methekar, R. N., V. Prasad, et al., “Dynamic Analysis and Linear Control Strategies for Proton Exchange Membrane Fuel Cell Using a Distributed Parameter Model,” Journal of Power Sources, 165(1): pp. 152-170, 2007. [42] Pukrushpan, J.T., H. Peng, and A.G. Stefanopoulou, “Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model,” 2002 ASME International Mechanical Engineering Congress & Exposition, 17-22, November 2002. [43] Wang FC, “Proton Exchange Membrane Fuel Cell System Identification and Control - Part II: H-infinity Based Robust Control”, Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology, 2006. [44] Yang YP, Wang FC, “Low Power Proton Exchange Membrane Fuel Cell System Identification and Adaptive Control”, Journal of Power Sources, 164(2): 761-771, 2007. [45] Vega-Leal AP, “Design of control systems for portable PEM fuel cells”, Journal of Power Sources, 169(1): pp. 194-197, 2007. [46] J.J. Hwang, D.Y. Wang, N.C. Shih, D.Y. Lai, C.K. Chen, “Development of fuel-cell-powered electric bicycle”, Journal of Power Sources, 133 (2004) 223–228. [47] Der-Ren Hsiao, Bo-Wun Huang, Nai-Chien Shih, “Development and dynamic characteristics of hybrid fuel cell-powered mini-train system”, International journal of hydrogen energy, 37 (2012) 1058-1066. [48] Jenn Jiang Hwang, “Review on development and demonstration of hydrogen fuel cell scooters”, Renewable and Sustainable Energy Reviews, 16 (2012) 3803– 3815. [49] Vinay Ananthachar, John J. Duffy, “Efficiencies of hydrogen storage system onboard fuel cell vehicle”, Solar Energy 78 (2005) 687–694. [50] 永昌電動車 http://www.yongchang.com.tw/index.php [51] Dawei Gao, Zhenhua Jin, Qingchun Lu, “Energy management strategy based on fuzzy logic for a fuel cell hybrid bus”, Journal of Power Sources, 185 (2008) 311–317. [52] 希望能源科技有限公司 http://www.fuelcellcentury.com [53] A123 System www.a123system.com [54] Palcan公司 http://www.palcan.com [55] Fu-Cheng Wang, Yu-Shu Chiang, 2012, August, “Design and Control of a PEMFC Powered Electric Wheelchair”, International Journal of Hydrogen Energy, Vol. 37, no.15, pp. 11299-11307. (SCI, I.F. =3.548, 16/81 (20%); 5yr I.F.= 4086, 15/81 (19%) in Energy & Fuels). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58835 | - |
dc.description.abstract | 本論文進行燃料電池電動腳踏車與電動代步車之系統整合與控制,以質子交換膜燃料電池搭配二次電池,作為電動車的電力源,並發展串並聯電力管理策略,運用在不同的電動車上進行比較。研究主要分為三個部分來執行:燃料電池的控制、電力管理系統的設計、以及電動車的整合與比較。
本論文採用兩組燃料電池系統。第一組燃料電池用於電動腳踏車,其輸入為氧氣與氫氣,輸出為燃料電池的電流,我們稱之為MISO燃料電池;沿用實驗室之前發展的強韌控制器設計方法,我們可以控制氫氣比例閥及空氣幫浦,有效地減少氫氣消耗與提昇系統性能,並達到穩定輸出電流的目標。第二組燃料電池用於電動代步車上,我們稱之為SISO燃料電池,其輸入為氫氣,輸出為燃料電池的電壓,我們可以控制電磁閥來調節氫氣的輸入量,以達到減少氫氣的消耗之目標。 其次,我們發展電力管理系統。我們以MISO燃料電池搭配兩組磷酸鋰鐵電池,發展串聯式混合電力鏈,並依據其動態特性制定適合的電力管理策略:以一個電池組提供電力給後端電動馬達,另一個電池組作為備用電源;當第一個電池組的殘電量降至一個定值時,切斷其供電迴路並控制燃料電池進行定電流充電,並且啟動另一個電池組進行供電,以維持電力的持續供應。另外,我們以SISO燃料電池搭配一組磷酸鋰鐵電池,規劃並聯式混合電力鏈:在低負載時由燃料電池對後端馬達供電;在高負載時則由二次電池輔助燃料電池同時對後端馬達供電。 最後,我們將上述MISO及以SISO燃料電池分別與電動腳踏車及代步車進行系統整合,以提供電動車穩定且持續的電力來源,並以實驗結果討論其系統效率,及不同電力管理策略的優缺點。 | zh_TW |
dc.description.abstract | This thesis focuses on the control and integration of fuel-cell powered light electric vehicles. The study was carried out in three steps: fuel-cell control, power management, and system integration.
In this thesis, we used two proton exchange membrane fuel-cell (PEMFC) to the proposed electric vehicles. The first one was called the MISO FC because it has two inputs of hydrogen and air and one output of cell-current. Therefore, we applied multivariable robust control to the proportional valve and air pump to reduce hydrogen consumption while providing steady current for charging the secondary battery sets. The second fuel-cell was called the SISO FC because it has an input of hydrogen flow rate and an output of cell-voltage. Therefore, we can control the solenoid valve to regulate the hydrogen flow rate and reduce hydrogen consumption. Second, we developed power management for the electric vehicles. We applied the MISO FC to the electric bicycles and designed a serial power-train, which consisted of the PEMFC and two 23.1V 6.9Ah LiFePO4 battery sets. The bike motors were directly powered by the battery set to avoid damaging the PEMFC due to rapidly varying loads. And the battery sets were charged in turn by the PEMFC when their capacities droped to a certain level. For comparison, we applied the SISO FC to the electric mobility scooter, and developed a parallel power-train that consisted of the PEMFC and one 23.1V 6.9Ah LiFePO4 battery set. The scooter motor was directly powered by the PEMFC at low loading mode, while the battery provided auxiliary power at the high loading mode. Lastly, we integrated the two PEMFC with the proposed electric vehicles, and verified the system performance by experiments. Based on the results, the proposed PEMFC powered electric bicycles and mobility scooter are deemed effective. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:33:46Z (GMT). No. of bitstreams: 1 ntu-102-R00522835-1.pdf: 4184529 bytes, checksum: 9d8bf5ffe2f25d47965c210cfee4fe92 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XIV 符號表 XVI 縮寫表 XIX 第一章 序論 1 1.1 研究動機與目的 1 1.2 文獻回顧 4 1.3 各章摘要 6 第二章 燃料電池簡介 8 2.1 燃料電池的歷史 8 2.2 燃料電池的種類與特性 8 第三章 質子交換膜燃料電池系統分析與系統識別 11 3.1 質子交換膜燃料電池的工作原理 11 3.2 質子交換膜燃料電池的系統架構 12 3.3 質子交換膜燃料電池的自由能與活化電位 14 3.3.1 理想電位與溫度關係 15 3.3.2 理想電位與氣體壓力的關係 16 3.4 燃料電池的極化現象 16 3.5 燃料電池的系統動態模型 18 3.6 燃料電池系統實驗設備介紹 18 3.7 系統識別原理與方法 23 3.8 系統識別實驗規劃與結果 25 第四章 強韌控制理論與控制器設計 31 4.1 系統的不確定性 31 4.2 標稱系統的選定 33 4.3 強韌性概念與分析 35 4.4 迴路成型設計 38 4.5 強韌控制器的實驗結果與討論 40 第五章 二次電池簡介 44 5.1 二次電池種類 44 5.2 電力參數 45 5.3 二次電池的充電方式 47 第六章 燃料電池混合電力鏈設計 52 6.1 混合電力鏈簡介 52 6.1.1 串聯式混合電力鏈 52 6.1.2 並聯式混合電力鏈 52 6.2 二次電池組的選擇 53 6.2.1 影響電池電容量的主要因素 55 6.2.2 電池殘電量估測 58 6.3 MISO燃料電池系統之電力管理策略設計與應用 59 6.3.1 硬體元件 60 6.3.2 電力管理策略設計 62 6.4 SISO燃料電池系統之電力管理策略設計與應用 64 6.4.1 硬體元件 65 6.4.2 電力管理策略設計 66 第七章 系統整合 70 7.1 系統整合架構 70 7.2 電動車車體配置與佈局 71 7.2.1 電動腳踏車車體配置與佈局 71 7.2.2 電動代步車車體配置與佈局 75 7.3 氫氣供應來源 77 7.4 串聯式電力鏈模擬與電動腳踏車實際上路實驗 77 7.4.1 電動腳踏車實際上路數據 77 7.4.2 電子負載器模擬上路實驗 84 7.4.3 串聯式混合電力鏈修改 91 7.4.4 實際上路實驗 92 7.4.5 系統單晶片控制 97 7.5 並聯式電力鏈模擬與電動代步車實際上路實驗 100 7.5.1 電動代步車實際上路數據 100 7.5.2 電子負載器模擬上路實驗 103 7.5.3 並聯式混合電力鏈修改 108 7.5.4 實際上路實驗 109 7.6 串並聯混合電力鏈交叉比較 115 7.6.1 電動代步車串聯式測試與比較 115 7.6.2 電動腳踏車並聯式測試與比較 118 7.7 本章結論與分析 122 第八章 結論與未來展望 124 8.1 重點結論 124 8.2 未來展望 126 參考文獻 128 附錄:口試委員問題與回答 133 | |
dc.language.iso | zh-TW | |
dc.title | 燃料電池電動腳踏車與代步車之系統整合與控制 | zh_TW |
dc.title | System Integration and Control of PEMFC Bicycles and Mobility Scooter | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏家鈺,呂志誠,林振生 | |
dc.subject.keyword | 質子交換膜燃料電池,強韌控制,磷酸鋰鐵電池,電動腳踏車,電動代步車,系統整合, | zh_TW |
dc.subject.keyword | Proton Exchange Membrane Fuel Cell (PEMFC),Robust Control,LiFePO4 battery,electric bicycle,electric mobility scooter,system integration, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-12-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。