請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58830完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳平(Richard P. Cheng) | |
| dc.contributor.author | Cheng-Hsun Wu | en |
| dc.contributor.author | 吳政勳 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:33:29Z | - |
| dc.date.available | 2019-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-12-04 | |
| dc.identifier.citation | Chapter 1 references
1. Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561. 2. Davey, M. J.; O'Donnell, M. Mechanisms of DNA replication. Curr. Opin. Chem. Biol. 2000, 4, 581. 3. Conaway, J. W.; Shilatifard, A.; Dvir, A.; Conaway, R. C. Control of elongation by RNA polymerase II. Trends Biochem. Sci. 2000, 25, 375. 4. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 2002, 108, 557. 5. Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737. 6. Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K. H.; Golden, B. L.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 1996, 273, 1678. 7. Portmann, S.; Usman, N.; Egli, M. The crystal-structure of r(CCCCGGGG) in two distinct lattices. Biochemistry 1995, 34, 7569. 8. Jucker, F. M.; Heus, H. A.; Yip, P. F.; Moors, E. H. M.; Pardi, A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 1996, 264, 968. 9. Altman, S. Isolation of tyrosine transfer RNA precursor molecules. Nature New Biol. 1971, 229, 19. 10. Stark, B. C.; Kole, R.; Bowman, E. J.; Altman, S. Ribonuclease P: An enzyme with an essential RNA component. Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 3717. 11. Cech, T. R.; Bass, B. L. Biological catalysis by RNA. Annu. Rev. Biochem. 1986, 55, 599. 12. Wanrooij, P. H.; Uhler, J. P.; Simonsson, T.; Falkenberg, M.; Gustafsson, C. M. G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16072. 13. Butler, E. B.; Xiong, Y.; Wang, J. M.; Strobel, S. A. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 2011, 18, 293. 14. Ray, P. S.; Jia, J.; Yao, P.; Majumder, M.; Hatzoglou, M.; Fox, P. L. A stress-responsive RNA switch regulates VEGFA expression. Nature 2009, 457, 915. 15. Parsons, C. J.; Stefanovic, B.; Seki, E.; Aoyama, T.; Latour, A. M.; Marzluff, W. F.; Rippe, R. A.; Brenner, D. A. Mutation of the 5'-untranslated region stem-loop structure inhibits a1(I) collagen expression in vivo. J. Biol. Chem. 2011, 286, 8609. 16. Cheah, M. T.; Wachter, A.; Sudarsan, N.; Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 2007, 447, 497. 17. Subramanian, M.; Rage, F.; Tabet, R.; Flatter, E.; Mandel, J. L.; Moine, H. G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 2011, 12, 697. 18. Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M.; Jungkamp, A. C.; Munschauer, M.; Ulrich, A.; Wardle, G. S.; Dewell, S.; Zavolan, M.; Tuschl, T. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010, 141, 129. 19. Radzicka, A.; Wolfenden, R. A proficient enzyme. Science 1995, 267, 90. 20. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984, 308, 693. 21. Rutz, J. M.; Liu, J.; Lyons, J. A.; Goranson, J.; Armstrong, S. K.; Mcintosh, M. A.; Feix, J. B.; Klebba, P. E. Formation of a gated channel by a ligand-specific transport protein in the bacterial outer membrane. Science 1992, 258, 471. 22. Aderem, A.; Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 2000, 406, 782. 23. Buehler, M. J. Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12285. 24. Pyle, A. M. Ribozymes: A distinct class of metalloenzymes. Science 1993, 261, 709. 25. Brion, P.; Westhof, E. Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 113. 26. Tinoco, I.; Bustamante, C. How RNA folds. J. Mol. Biol. 1999, 293, 271. 27. Perez-Canadillas, J. M.; Varani, G. Recent advances in RNA-protein recognition. Curr. Opin. Struc. Biol. 2001, 11, 53. 28. Weeks, K. M.; Cech, T. R. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science 1996, 271, 345. 29. Mattaj, I. W. RNA recognition: A family matter? Cell 1993, 73, 837. 30. Burd, C. G.; Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 1994, 265, 615. 31. Messias, A. C.; Sattler, M. Structural basis of single-stranded RNA recognition. Acc. Chem. Res. 2004, 37, 279. 32. Varani, G. RNA-protein intermolecular recognition. Acc. Chem. Res. 1997, 30, 189. 33. Varani, G.; Nagai, K. RNA recognition by RNP proteins during RNA processing. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 407. 34. Hoffman, D. W.; Query, C. C.; Golden, B. L.; White, S. W.; Keene, J. D. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy Is structurally similar to ribosomal proteins. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 2495. 35. Oubridge, C.; Ito, N.; Evans, P. R.; Teo, C. H.; Nagai, K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 1994, 372, 432. 36. Conte, M. R.; Grune, T.; Ghuman, J.; Kelly, G.; Ladas, A.; Matthews, S.; Curry, S. Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J. 2000, 19, 3132. 37. Hall, K. B. Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. Biochemistry 1994, 33, 10076. 38. Kenan, D. J.; Query, C. C.; Keene, J. D. RNA recognition: Towards identifying determinants of specificity. Trends Biochem. Sci. 1991, 16, 214. 39. Nagai, K.; Oubridge, C.; Jessen, T. H.; Li, J.; Evans, P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 1990, 348, 515. 40. Gorlach, M.; Wittekind, M.; Beckman, R. A.; Mueller, L.; Dreyfuss, G. Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J. 1992, 11, 3289. 41. Merrill, B. M.; Stone, K. L.; Cobianchi, F.; Wilson, S. H.; Williams, K. R. Phenylalanines that are conserved among several RNA-binding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein. J. Biol. Chem. 1988, 263, 3307. 42. Siomi, H.; Matunis, M. J.; Michael, W. M.; Dreyfuss, G. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 1993, 21, 1193. 43. Grishin, N. V. KH domain: one motif, two folds. Nucleic Acids Res. 2001, 29, 638. 44. Valverde, R.; Edwards, L.; Regan, L. Structure and function of KH domains. FEBS J. 2008, 275, 2712. 45. Krecic, A. M.; Swanson, M. S. hnRNP complexes: Composition, structure, and function. Curr. Opin. Cell Biol. 1999, 11, 363. 46. Ostareck-Lederer, A.; Ostareck, D. H.; Hentze, M. W. Cytoplasmic regulatory functions of the KH-domain proteins hnRNPs K and E1/E2. Trends Biochem. Sci. 1998, 23, 409. 47. Kao, D. I.; Aldridge, G. M.; Weiler, I. J.; Greenough, W. T. Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 15601. 48. Gibson, T. J.; Thompson, J. D.; Heringa, J. The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Lett. 1993, 324, 361. 49. Ashley, C. T.; Wilkinson, K. D.; Reines, D.; Warren, S. T. FMR1 protein: Conserved RNP family domains and selective RNA binding. Science 1993, 262, 563. 50. Lazinski, D.; Grzadzielska, E.; Das, A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 1989, 59, 207. 51. Frankel, A. D.; Smith, C. A. Induced folding in RNA-protein recognition: More than a simple molecular handshake. Cell 1998, 92, 149. 52. Legault, P.; Li, J.; Mogridge, J.; Kay, L. E.; Greenblatt, J. NMR structure of the bacteriophage l N peptide/boxB RNA complex: Recognition of a GNRA fold by an arginine-rich motif. Cell 1998, 93, 289. 53. Puglisi, J. D.; Chen, L.; Blanchard, S.; Frankel, A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science 1995, 270, 1200. 54. Battiste, J. L.; Mao, H. Y.; Rao, N. S.; Tan, R. Y.; Muhandiram, D. R.; Kay, L. E.; Frankel, A. D.; Williamson, J. R. a helix-RNA major groove recognition in an HIV-1 Rev peptide RRE RNA complex. Science 1996, 273, 1547. 55. Calnan, B. J.; Tidor, B.; Biancalana, S.; Hudson, D.; Frankel, A. D. Arginine-mediated RNA recognition: The arginine fork. Science 1991, 252, 1167. 56. Weeks, K. M.; Crothers, D. M. RNA recognition by Tat-derived peptides: Interaction in the major groove. Cell 1991, 66, 577. 57. Patel, D. J. Adaptive recognition in RNA complexes with peptides and protein modules. Curr. Opin. Struct. Biol. 1999, 9, 74. 58. Calnan, B. J.; Biancalana, S.; Hudson, D.; Frankel, A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA protein recognition. Genes Dev. 1991, 5, 201. 59. Bartel, D. P.; Zapp, M. L.; Green, M. R.; Szostak, J. W. HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 1991, 67, 529. 60. Puglisi, J. D.; Tan, R. Y.; Calnan, B. J.; Frankel, A. D.; Williamson, J. R. Conformation of the TAR RNA-arginine complex by NNR spectroscopy. Science 1992, 257, 76. 61. Bretsche.Ms. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 1972, 236, 11. 62. Hedin, L. E.; Illergard, K.; Elofsson, A. An introduction to membrane proteins. J. Proteome Res. 2011, 10, 3324. 63. Janas, T.; Janas, T. Membrane oligo- and polysialic acids. Biochim. Biophys. Acta-Biomembranes 2011, 1808, 2923. 64. Singer, S. J.; Nicolson, G. L. Fluid mosaic model of structure of cell membranes. Science 1972, 175, 720. 65. Engelman, D. M. Membranes are more mosaic than fluid. Nature 2005, 438, 578. 66. Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of univalent ions across lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238. 67. Gorovits, N.; Charron, M. J. What we know about facilitative glucose transporters. Biochem. Mol. Biol. Educ. 2003, 31, 163. 68. MacKinnon, R.; Cohen, S. L.; Kuo, A. L.; Lee, A.; Chait, B. T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science 1998, 280, 106. 69. Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69. 70. Agre, P. The aquaporin water channels. Proc. Am. Thorac. Soc. 2006, 3, 5. 71. Roth, M. G. Clathrin-mediated endocytosis before fluorescent proteins. Nat. Rev. Mol. Cell Biol. 2006, 7, 63. 72. Marsh, M.; McMahon, H. T. The structural era of endocytosis. Science 1999, 285, 215. 73. Parton, R. G.; Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007, 8, 185. 74. Falcone, S.; Cocucci, E.; Podini, P.; Kirchhausen, T.; Clementi, E.; Meldolesi, J. Macropinocytosis: Regulated coordination of endocytic and exocytic membrane traffic events. J. Cell Sci. 2006, 119, 4758. 75. Goodridge, H. S.; Underhill, D. M.; Touret, N. Mechanisms of Fc receptor and Dectin-1 activation for phagocytosis. Traffic 2012, 13, 1062. 76. Roth, T. F.; Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 1964, 20, 313. 77. Pearse, B. M. Clathrin: A unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 1255. 78. Pearse, B. M. F.; Smith, C. J.; Owen, D. J. Clathrin coat construction in endocytosis. Curr. Opin. Struc. Biol. 2000, 10, 220. 79. Gaidarov, I.; Santini, F.; Warren, R. A.; Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nat. Cell Biol. 1999, 1, 1. 80. Ungewickell, E.; Branton, D. Assembly units of clathrin coats. Nature 1981, 289, 420. 81. Kirchhausen, T.; Harrison, S. C. Protein organization in clathrin trimers. Cell 1981, 23, 755. 82. Mousavi, S. A.; Malerod, L.; Berg, T.; Kjeken, R. Clathrin-dependent endocytosis. Biochem. J. 2004, 377, 1. 83. Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377, 159. 84. Palade, G. E. Fine structure of blood capillaries. J. Appl. Phys. 1953, 24, 1424. 85. Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1955, 1, 445. 86. Parton, R. G.; Hanzal-Bayer, M.; Hancock, J. F. Biogenesis of caveolae: A structural model for caveolin-induced domain formation. J. Cell Sci. 2006, 119, 787. 87. Pelkmans, L.; Zerial, M. Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 2005, 436, 128. 88. Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature 1997, 387, 569. 89. Tang, Z. L.; Scherer, P. E.; Okamoto, T.; Song, K.; Chu, C.; Kohtz, D. S.; Nishimoto, I.; Lodish, H. F.; Lisanti, M. P. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 1996, 271, 2255. 90. Way, M.; Parton, R. G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 1995, 376, 108. 91. Rothberg, K. G.; Heuser, J. E.; Donzell, W. C.; Ying, Y. S.; Glenney, J. R.; Anderson, R. G. W. Caveolin, a protein component of caveolae membrane coats. Cell 1992, 68, 673. 92. Thomsen, P.; Roepstorff, K.; Stahlhut, M.; van Deurs, B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 2002, 13, 238. 93. Li, H.; Papadopoulos, V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus patterns. Endocrinology 1998, 139, 4991. 94. Epand, R. M.; Sayer, B. G.; Epand, R. F. Caveolin scaffolding region and cholesterol-rich domains in membranes. J. Mol. Biol. 2005, 345, 339. 95. Mayor, S.; Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 603. 96. Singh, R. D.; Puri, V.; Valiyaveettil, J. T.; Marks, D. L.; Bittman, R.; Pagano, R. E. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell 2003, 14, 3254. 97. Cheng, Z. J.; Singh, R. D.; Sharma, D. K.; Holicky, E. L.; Hanada, K.; Marks, D. L.; Pagano, R. E. Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol. Biol. Cell 2006, 17, 3197. 98. Watts, C.; Marsh, M. Endocytosis: What goes in and how? J. Cell Sci. 1992, 103, 1. 99. Swanson, J. A.; Watts, C. Macropinocytosis. Trends Cell Biol. 1995, 5, 424. 100. Francis, C. L.; Ryan, T. A.; Jones, B. D.; Smith, S. J.; Falkow, S. Ruffles induced by salmonella and other stimuli direct macropinocytosis of bacteria. Nature 1993, 364, 639. 101. Norbury, C. C. Drinking a lot is good for dendritic cells. Immunology 2006, 117, 443. 102. Racoosin, E. L.; Swanson, J. A. Macropinosome maturation and fusion with tubular lysosomes in macrophages. J. Cell Biol. 1993, 121, 1011. 103. Ravetch, J. V.; Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 2001, 19, 275. 104. West, M. A.; Wallin, R. P.; Matthews, S. P.; Svensson, H. G.; Zaru, R.; Ljunggren, H. G.; Prescott, A. R.; Watts, C. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 2004, 305, 1153. 105. Underhill, D. M.; Goodridge, H. S. Information processing during phagocytosis. Nat. Rev. Immunol. 2012, 12, 492. 106. Marechal, V.; Prevost, M. C.; Petit, C.; Perret, E.; Heard, J. M.; Schwartz, O. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J. Virol. 2001, 75, 11166. 107. Kaplan, I. M.; Wadia, J. S.; Dowdy, S. F. Cationic Tat peptide transduction domain enters cells by macropinocytosis. J. Control. Release 2005, 102, 247. 108. Greenwood, K. P.; Daly, N. L.; Brown, D. L.; Stow, J. L.; Craik, D. J. The cyclic cystine knot miniprotein MCoTI-II is internalized into cells by macropinocytosis. Int. J. Biochem. Cell Biol. 2007, 39, 2252. 109. Wender, P. A.; Galliher, W. C.; Goun, E. A.; Jones, L. R.; Pillow, T. H. The design of guanidinium-rich transporters and their internalization mechanisms. Adv. Drug Delivery Rev. 2008, 60, 452. 110. Sultana, S.; Khan, M. R.; Kumar, M.; Kumar, S.; Ali, M. Nanoparticles-mediated drug delivery approaches for cancer targeting. J. Drug Target. 2013, 21, 107. 111. Frankel, A. D.; Pabo, C. O. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 1988, 55, 1189. 112. Joliot, A.; Pernelle, C.; Deagostinibazin, H.; Prochiantz, A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 1864. 113. Fawell, S.; Seery, J.; Daikh, Y.; Moore, C.; Chen, L. L.; Pepinsky, B.; Barsoum, J. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 664. 114. Vives, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010. 115. Fischer, R.; Fotin-Mleczek, M.; Hufnagel, H.; Brock, R. Break on through to the other side biophysics and cell biology shed light on cell-penetrating peptides. ChemBioChem 2005, 6, 2126. 116. Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-rich peptides: An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 2001, 276, 5836. 117. Lindgren, M.; Langel, U. Classes and prediction of cell-penetrating peptides. Methods Mol. Biol. 2011, 683, 3. 118. Richard, J. P.; Melikov, K.; Vives, E.; Ramos, C.; Verbeure, B.; Gait, M. J.; Chernomordik, L. V.; Lebleu, B. Cell-penetrating peptides: A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 2003, 278, 585. 119. Richard, J. P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L. V. Cellular uptake of unconjugated Tat peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 2005, 280, 15300. 120. Ferrari, A.; Pellegrini, V.; Arcangeli, C.; Fittipaldi, A.; Giacca, M.; Beltram, F. Caveolae-mediated internalization of extracellular HIV-1 Tat fusion proteins visualized in real time. Mol. Ther. 2003, 8, 284. 121. Nakase, I.; Niwa, M.; Takeuchi, T.; Sonomura, K.; Kawabata, N.; Koike, Y.; Takehashi, M.; Tanaka, S.; Ueda, K.; Simpson, J. C.; Jones, A. T.; Sugiura, Y.; Futaki, S. Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol. Ther. 2004, 10, 1011. 122. Fretz, M. M.; Penning, N. A.; Al-Taei, S.; Futaki, S.; Takeuchi, T.; Nakase, I.; Storm, G.; Jones, A. T. Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem. J. 2007, 403, 335. 123. Kosuge, M.; Takeuchi, T.; Nakase, I.; Jones, A. T.; Futaki, S. Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjugate Chem. 2008, 19, 656. 124. Takeuchi, T.; Kosuge, M.; Tadokoro, A.; Sugiura, Y.; Nishi, M.; Kawata, M.; Sakai, N.; Matile, S.; Futaki, S. Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate. ACS Chem. Biol. 2006, 1, 299. 125. Hirose, H.; Takeuchi, T.; Osakada, H.; Pujals, S.; Katayama, S.; Nakase, I.; Kobayashi, S.; Haraguchi, T.; Futaki, S. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol. Ther. 2012, 20, 984. 126. Prochiantz, A. Messenger proteins: Homeoproteins, Tat and others. Curr. Opin. Cell Biol. 2000, 12, 400. 127. Pouny, Y.; Rapaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 1992, 31, 12416. 128. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001, 81, 1475. 129. Rothbard, J. B.; Jessop, T. C.; Wender, P. A. Adaptive translocation: The role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv. Drug Delivery Rev. 2005, 57, 495. 130. Suzuki, T.; Futaki, S.; Niwa, M.; Tanaka, S.; Ueda, K.; Sugiura, Y. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 2002, 277, 2437. 131. Arya, S. K.; Guo, C.; Josephs, S. F.; Wongstaal, F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 1985, 229, 69. 132. Cordingley, M. G.; Lafemina, R. L.; Callahan, P. L.; Condra, J. H.; Sardana, V. V.; Graham, D. J.; Nguyen, T. M.; Legrow, K.; Gotlib, L.; Schlabach, A. J.; Colonno, R. J. Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human-immunodeficiency-virus type-1 in vitro. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 8985. 133. Weeks, K. M.; Ampe, C.; Schultz, S. C.; Steitz, T. A.; Crothers, D. M. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 1990, 249, 1281. 134. Cullen, B. R. Regulation of HIV-1 gene expression. FASEB J. 1991, 5, 2361. 135. Stevens, M.; De Clercq, E.; Balzarini, J. The regulation of HIV-1 transcription: Molecular targets for chemotherapeutic intervention. Med. Res. Rev. 2006, 26, 595. 136. Ensoli, B.; Buonaguro, L.; Barillari, G.; Fiorelli, V.; Gendelman, R.; Morgan, R. A.; Wingfield, P.; Gallo, R. C. Release, uptake, and effects of extracellular human-immunodeficiency-virus type-1 Tat protein on cell-growth and viral transactivation. J. Virol. 1993, 67, 277. 137. Berman, J. W.; Eugenin, E. A.; King, J. E.; Nath, A.; Calderon, T. M.; Zukin, R. S.; Bennett, M. V. L. HIV-tat induces formation of an LRP-PSD-95-NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 3438. 138. Misumi, S.; Takamune, N.; Ohtsubo, Y.; Waniguchi, K.; Shoji, S. Zn2+ binding to cysteine-rich domain of extracellular human immunodeficiency virus type 1 Tat protein is associated with Tat protein-induced apoptosis. AIDS Res. Hum. Retrov. 2004, 20, 297. Chapter 2 references 1. Cloyd, M. W.; Chen, J. J. Y.; Wang, L. Q. How does HIV cause AIDS? The homing theory. Mol. Med. Today 2000, 6, 108. 2. Douek, D. C.; Roederer, M.; Koup, R. A. Emerging concepts in the immunopathogenesis of AIDS. Annu. Rev. Med. 2009, 60, 471. 3. Varmus, H. Retroviruses. Science 1988, 240, 1427. 4. Gentile, M.; Adrian, T.; Scheidler, A.; Ewald, M.; Dianzani, F.; Pauli, G.; Gelderblom, H. R. Determination of the size of HIV using adenovirus type-2 as an internal length marker. J. Virol. Methods 1994, 48, 43. 5. Weiss, R. A. How does HIV cause AIDS. Science 1993, 260, 1273. 6. Lapham, C. K.; Ouyang, J.; Chandrasekhar, B.; Nguyen, N. Y.; Dimitrov, D. S.; Golding, H. Evidence for cell-surface association between fusin and the CD4-gp120 complex in human cell lines. Science 1996, 274, 602. 7. Chan, D. C.; Kim, P. S. HIV entry and its inhibition. Cell 1998, 93, 681. 8. Doms, R. W.; Moore, J. P. HIV-1 membrane fusion: Targets of opportunity. J. Cell Biol. 2000, 151, 9. 9. Caffrey, M. HIV envelope: Challenges and opportunities for development of entry inhibitors. Trends Microbiol. 2011, 19, 191. 10. Mehellou, Y.; De Clercq, E. Twenty-six years of anti-HIV drug discovery: Where do we stand and where do we go? J. Med. Chem. 2010, 53, 521. 11. Arnold, E.; Jacobomolina, A.; Nanni, R. G.; Williams, R. L.; Lu, X. D.; Ding, J. P.; Clark, A. D.; Zhang, A. Q.; Ferris, A. L.; Clark, P.; Hizi, A.; Hughes, S. H. Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active-site locations. Nature 1992, 357, 85. 12. Pommier, Y.; Johnson, A. A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov. 2005, 4, 236. 13. Sahu, G. K.; Lee, K.; Ji, J. X.; Braciale, V.; Baron, S.; Cloyd, M. W. A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology 2006, 355, 127. 14. Cullen, B. R.; Greene, W. C. Regulatory pathways governing HIV-1 replication. Cell 1989, 58, 423. 15. Barresinoussi, F.; Chermann, J. C.; Rey, F.; Nugeyre, M. T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axlerblin, C.; Vezinetbrun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983, 220, 868. 16. Zheng, Y. H.; Lovsin, N.; Peterlin, B. M. A. Newly identified host factors modulate HIV replication. Immunol. Lett. 2005, 97, 225. 17. Stevens, M.; De Clercq, E.; Balzarini, J. The regulation of HIV-1 transcription: Molecular targets for chemotherapeutic intervention. Med. Res. Rev. 2006, 26, 595. 18. Sheldon, M.; Ratnasabapathy, R.; Hernandez, N. Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs. Mol. Cell. Biol. 1993, 13, 1251. 19. Muesing, M. A.; Smith, D. H.; Capon, D. J. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 1987, 48, 691. 20. Kao, S. Y.; Calman, A. F.; Luciw, P. A.; Peterlin, B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by Tat gene product. Nature 1987, 330, 489. 21. Jakobovits, A.; Smith, D. H.; Jakobovits, E. B.; Capon, D. J. A discrete element 3' of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans activator. Mol. Cell. Biol. 1988, 8, 2555. 22. Selby, M. J.; Bain, E. S.; Luciw, P. A.; Peterlin, B. M. Structure, sequence, and position of the stem loop in TAR determine transcriptional elongation by Tat through the HIV-1 long terminal repeat. Genes Dev. 1989, 3, 547. 23. Pessler, F.; Pendergrast, P. S.; Hernandez, N. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts. Mol. Cell. Biol. 1997, 17, 3786. 24. Wei, P.; Garber, M. E.; Fang, S. M.; Fischer, W. H.; Jones, K. A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998, 92, 451. 25. Feng, S.; Holland, E. C. HIV-1 Tat trans-activation requires the loop sequence within TAR. Nature 1988, 334, 165. 26. Tahirov, T. H.; Babayeva, N. D.; Varzavand, K.; Cooper, J. J.; Sedore, S. C.; Price, D. H. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 2010, 465, 747. 27. Ping, Y. H.; Rana, T. M. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem. 2001, 276, 12951. 28. Fujinaga, K.; Irwin, D.; Huang, Y. H.; Taube, R.; Kurosu, T.; Peterlin, B. M. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 2004, 24, 787. 29. Aboulela, F.; Karn, J.; Varani, G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J. Mol. Biol. 1995, 253, 313. 30. Aboulela, G.; Karn, J.; Varani, G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 1996, 24, 4598. 31. Puglisi, J. D.; Tan, R. Y.; Calnan, B. J.; Frankel, A. D.; Williamson, J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 1992, 257, 76. 32. Muesing, M. A.; Smith, D. H.; Cabradilla, C. D.; Benton, C. V.; Lasky, L. A.; Capon, D. J. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 1985, 313, 450. 33. Arya, S. K.; Guo, C.; Josephs, S. F.; Wongstaal, F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 1985, 229, 69. 34. Kuppuswamy, M.; Subramanian, T.; Srinivasan, A.; Chinnadurai, G. Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res. 1989, 17, 3551. 35. Rana, T. M.; Jeang, K. T. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch. Biochem. Biophys. 1999, 365, 175. 36. Campbell, G. R.; Loret, E. P. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 2009, 6. 37. Cordingley, M. G.; Lafemina, R. L.; Callahan, P. L.; Condra, J. H.; Sardana, V. V.; Graham, D. J.; Nguyen, T. M.; Legrow, K.; Gotlib, L.; Schlabach, A. J.; Colonno, R. J. Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 8985. 38. Frankel, A. D.; Pabo, C. O. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 1988, 55, 1189. 39. Huigen, M. C. D. G.; Kamp, W.; Nottet, H. S. L. M. Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection. Eur. J. Clin. Invest. 2004, 34, 57. 40. Ensoli, B.; Buonaguro, L.; Barillari, G.; Fiorelli, V.; Gendelman, R.; Morgan, R. A.; Wingfield, P.; Gallo, R. C. Release, uptake, and effects of extracellular human-immunodeficiency-virus type-1 Tat protein on cell-growth and viral transactivation. J. Virol. 1993, 67, 277. 41. Misumi, S.; Takamune, N.; Ohtsubo, Y.; Waniguchi, K.; Shoji, S. Zn2+ binding to cysteine-rich domain of extracellular human immunodeficiency virus type 1 Tat protein is associated with Tat protein-induced apoptosis. AIDS Res. Hum. Retrov. 2004, 20, 297. 42. Mann, D. A.; Frankel, A. D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 1991, 10, 1733. 43. Fawell, S.; Seery, J.; Daikh, Y.; Moore, C.; Chen, L. L.; Pepinsky, B.; Barsoum, J. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 664. 44. Vives, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010. 45. Ruben, S.; Perkins, A.; Purcell, R.; Joung, K.; Sia, R.; Burghoff, R.; Haseltine, W. A.; Rosen, C. A. Structural and functional characterization of human immunodeficiency virus Tat protein. J. Virol. 1989, 63, 1. 46. Mao, Z. W.; Wan, L.; Hu, L.; Ma, L.; Gao, C. Y. Tat peptide mediated cellular uptake of SiO2 submicron particles. Colloids Surf. B: Biointerfaces 2010, 75, 432. 47. El-Sayed, A.; Futaki, S.; Harashima, H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: Ways to overcome endosomal entrapment. AAPS J. 2009, 11, 13. 48. Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-rich peptides: An abundant source | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58830 | - |
| dc.description.abstract | 精胺酸的側鏈長短對蛋白質結構穩定上的影響已有相當的結果,然而在生物功能方面的應用與影響仍需進一步的研究。在人類免疫缺乏病毒Tat蛋白質中的一段胜肽序列:Tat(47-57)同時具有與病毒TAR RNA結合及穿透細胞膜的能力,且此序列上的六個精胺酸對於TAR RNA辨認及穿透細胞膜相當重要。在此研究中將此胜肽序列作為模組來研究精胺酸側鏈長短對Tat衍生胜肽生物功能的影響。Tat衍生胜肽為將Tat(47-57)胜肽鏈上的六個精胺酸同時取代為Agh (側鏈較Arg多一個亞甲基),或Agb (側鏈較Arg少一個亞甲基)。利用螢光各向異性度分析和膠體電泳偏移分析來研究Tat衍生胜肽與TAR RNA的解離常數。利用螢光顯微鏡觀察及流式細胞儀測量Tat衍生胜肽進入Jurkat細胞內部的效率。此外也以圓二色光譜儀偵測Tat衍生胜肽在與TAR RNA及仿細胞膜脂肪聚合物結合時其二級結構上的變化以求了解其機制。在AghTat的結果中將側鏈加長會降低與TAR RNA的專一性但增強進入細胞的能力。而將側鏈縮短時(AgbTat)會同時增加與TAR RNA的專一性及穿透細胞膜的能力。此結果顯示將側鏈縮短的AgbTat衍生胜肽或許可應用於藥物傳輸及人類免疫缺乏病毒治療。
為了更進一步發展出對人類免疫缺乏病毒TAR RNA有好的結合能力的Tat衍生胜肽。將Tat(47-57)模組上的六個精胺酸分別取代成Agh,Agb及Agp (側鏈較Arg少二個亞甲基),藉膠體電泳偏移分析得知不同側鏈長短的Arg衍生物在不同位置上對TAR RNA專一性結合的影響。再將不同位置上具有最佳專一性的Arg衍生物重新組合成一組在不同位置具有不同側鏈長度的Tat衍生胜肽且具有對人類免疫缺乏病毒TAR RNA最好的專一性結合能力。此系列胜肽也同時增強進入細胞的能力,且在細胞缺乏ATP的條件下,胜肽仍可經由non-endocytosis機制進入細胞。由非自然界胺基酸所組成之胜肽鏈,具有抗胰蛋白酶(trypsin)水解之能力,此外此胜肽鏈也可在細胞內部維持24小時以上。利用含有HIV TAR RNA及luciferase基因修飾的Jurkat細胞證實此系列胜肽鏈,可有效抑制HIV TAR RNA基因段的轉錄。根據研究結果此系列胜肽鏈或許可應用於藥物傳輸及人類免疫缺乏病毒治療。 將此研究中所發現具有較好細胞膜穿透能力的Tat衍生胜肽與不同尺寸的中孔洞二氧化矽奈米粒子結合,研究精胺酸側鏈長短對不同尺寸奈米粒子輸送效率及機制的影響。利用流式細胞儀測量奈米粒子在不同環境下進入HeLa細胞內部的效率,再以共軛焦顯微鏡觀察其在細胞內部的分布以推測其機制。結果顯示中孔洞二氧化矽奈米粒子進入細胞的效率與機制與其粒子大小及表面修飾有關。另外在300奈米尺寸下,非自然界Tat衍生胜肽可有效幫助中孔洞二氧化矽奈米粒子進入細胞質。 | zh_TW |
| dc.description.abstract | The guanidinium bearing side chain of arginine (Arg) is unique and critical for various bioactivities. However, the functional role of the three hydrophobic methylenes linking the hydrophilic guanidinium group to the backbone of Arg remains unclear. As such, the effect of arginine side chain length on RNA recognition and cellular uptake has been investigated. The 11-amino acid basic region of HIV Tat protein (human immunodeficiency virus transactivator of transcription protein, residues 47-57) binds to the transactivator response element (TAR) RNA, and is responsible for cell penetration. The six arginines in the Tat(47-57) peptide were all simultaneously replaced by arginine analogs (S)-2-amino-6-guanidinohexanoic acid (Agh, 4 methylenes) or (S)-2-amino- 4-guanidinobutyric acid (Agb, 2 methylenes). These Tat-derived peptides were synthesized by solid phase peptide synthesis (SPPS). The binding specificity was determined by electrophoretic mobility shift assays (EMSA). The cellular uptake into Jurkat cells were determined by flow cytometry. Lengthening the Arg side chain length by one methylene to give AghTat greatly diminished specific binding of TAR RNA, with slightly increased cellular uptake. Surprisingly, shortening the Arg side chain length to give AgbTat enhanced both TAR RNA binding specificity and cellular uptake. As such, AgbTat may be useful for developing drug delivery vehicles or anti-HIV therapeutics.
The effect of side chain length at the different positions of Tat(47-57) for binding TAR RNA was explored. For position 57, Arg and Agb exhibited similar binding specificity. For position 56, the TAR RNA binding specificity followed the trend Agb > Agp > Arg > Agh (Agp, side chain two methylenes shorter than Arg). For position 55, Arg and Agp exhibited similar binding specificity. For 53 position, the TAR RNA binding specificity followed the trend Agp > Agb ~ Arg > Agh. For positions 52 and 49, the TAR RNA binding specificity followed the trend Agp > Arg > Agb > Agh. The potentially most optimal Tat-derived peptide for specific binding to TAR RNA with Arg analogs of mixed side chain lengths was designed by combining the Arg analogs with the highest binding affinity at each position. The Tat-CX peptides exhibited higher TAR RNA binding specificity and cellular uptake compared to ArgTat. Furthermore, a portion of the cellular uptake for the Tat CX peptides apparently occurred via non-endocytotic pathways. The non-natural amino acids containing Tat-CX peptides exhibited high resistance to trypsin proteolysis and intracellular degradation. Importantly, most Tat-CX peptides inhibited Tat-dependent luciferase gene expression more than native ArgTat. These results suggest that the non-natural Tat-derived peptides (Tat-CX) may be effective peptide transporters for drug delivery application and anti-HIV therapeutics. Preliminary temperature dependence studies on cellular uptake of Tat-derived peptides suggested non-endocytotic uptake. Accordingly, analogous Tat-derived peptides (XaaTatC) were conjugated onto MSNs with different sizes to affect the cellular uptake efficiency of the MSNs. The uptake into HeLa cells were investigated by flow cytometry and confocal microscopy. Results showed size dependence in cellular uptake efficiency and mechanism of the MSNs. Furthermore, endosome trapping of the 300 nm MSN was circumvented by improving the efficiency of endosomal escape and even enhancing non-endocytotic pathways. Importantly, introducing cell-penetrating peptides containing non-natural amino acids analogs with varying side chain lengths should be a useful strategy for the design of nanoparticle surface ligands for biomedical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:33:29Z (GMT). No. of bitstreams: 1 ntu-102-F97223159-1.pdf: 11792739 bytes, checksum: c1edde13c1f11e6ff115a10b7acd1b06 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Table of Content viii List of Figures xi List of Tables xviii List of Schemes xix Abbreviations xx Chapter 1 Introduction 1 1-1. Central Dogma of Molecular Biology 2 1-2. RNA recognition 4 RNA Recognition Motif (RRM) 5 K Homology Domain (KH) 6 Arginine-Rich Motif (ARM) 8 1-3. Biological Membrane 9 Clathrin-Mediated Endocytosis 10 Caveolae-Mediated Endocytosis 11 Macropinocytosis and Phagocytosis 12 1-4. Cell Penetrating Peptide 13 1-5. Thesis Overview 16 1-6. References 18 Chapter 2 Effect of Arginine Side Chain Length on RNA Recognition and Cellular Uptake 28 2-1. Introduction 29 Human Immunodeficiency Virus (HIV) 29 Transactivation Response Element (TAR) 31 Transactivator of Transcription (Tat) Protein 33 Cell Penetrating Peptides: Tat Peptide and Arginine Oligomers 34 Inhibition of Tat-TAR Interaction 37 2-2. Results and Discussion 39 Peptide Design 39 Peptide Synthesis 41 Fluorescence Anisotropy Assay 43 Electrophoretic Mobility Shift Assays (EMSA) 45 Electrophoretic Mobility Shift Assays in the Presence of Poly-dIdC 47 Electrophoretic Mobility Shift Assays in the Presence of E.coli tRNA 51 Circular Dichroism Spectroscopy 53 Cellular Uptake 58 Circular Dichroism Spectroscopy for Tat-derived Peptide in the Presence of Membrane Mimicking Agents 62 MTT Assay for Determining Cytotoxicity of Tat-Derived Peptides 64 2-3. Conclusion 65 2-4. Acknowledgments 66 2-5. Experimental Section 66 2-6. References 85 Chapter 3 Sequence Scanning of Tat-Derived Peptide with Arginine Analogs 94 3-1. Introduction 95 3-2. Results and Discussion 98 Design and Synthesis of Individually Substituted Tat-Derived Peptides 98 Electrophoretic Mobility Shift Assays of Individually Substituted Tat-Derived Peptides in the Presence of Poly-dIdC 101 Design and Synthesis of Optimal Tat-Derived Sequences for TAR RNA Recognition 113 Electrophoretic Mobility Shift Assays of Tat-CX in the Presence of Poly-dIdC 116 Electrophoretic Mobility Shift Assays of Tat-CX in the Presence of E.coli tRNA 120 Circular Dichroism Spectroscopy of Tat-CX Peptides 123 Cellular Uptake of Flu-Tat CX 125 Cellular Uptake in the Presence of ATP Inhibitors. 127 Proteolytic Stability 128 Tat-CX Inhibits Tat-Dependent Transactivation 132 3-3. Conclusion 135 3-4. Acknowledgments 136 3-5. Experimental section 137 3-6. References 171 Chapter 4 Enhanced Cellular Uptake of Mesoporous Silica Nanoparticles by Non-Natural Tat-Derived Peptides 174 4-1. Introduction 175 4-2. Results and Discussion 180 Peptide Design and Synthesis 180 XaaTatC-MSNs/MSSs Design and Synthesis 182 Transmission Electron Microscopy Characterization 183 Cellular Uptake 184 Cellular Uptake in the Presence of ATP Inhibitors 187 Confocal Microscopy 190 4-3. Conclusion 193 4-4. Acknowledgments 193 4-5. Experimental Section 194 4-6. References 206 | |
| dc.language.iso | en | |
| dc.subject | 非自然界胺基酸 | zh_TW |
| dc.subject | Tat衍生胜? | zh_TW |
| dc.subject | 辨識核糖核酸 | zh_TW |
| dc.subject | 細胞穿透胜? | zh_TW |
| dc.subject | 中孔洞二氧化矽奈米粒子輸送 | zh_TW |
| dc.subject | non-natural arginine analogs | en |
| dc.subject | Tat-derived peptides | en |
| dc.subject | RNA recognition | en |
| dc.subject | cellular uptake | en |
| dc.subject | nanoparticle delivery. | en |
| dc.title | 精胺酸側鏈長短對Tat衍生胜肽之生物功能的影響 | zh_TW |
| dc.title | Effect of Arginine Side Chain Length on the Biological Functions of Tat-Derived Peptides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 牟中原(Chung-Yuan Mou),陳佩燁(Rita P.-Y. Chen),黃人則(Joseph Jen-Tse Huang),何佳安(Annie Ja-An Ho),潘建源(Chien-Yuan Pan) | |
| dc.subject.keyword | 非自然界胺基酸,Tat衍生胜?,辨識核糖核酸,細胞穿透胜?,中孔洞二氧化矽奈米粒子輸送, | zh_TW |
| dc.subject.keyword | non-natural arginine analogs,Tat-derived peptides,RNA recognition,cellular uptake,nanoparticle delivery., | en |
| dc.relation.page | 210 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-12-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 11.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
