Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58823
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游佳欣
dc.contributor.authorChing-Yu Linen
dc.contributor.author林敬于zh_TW
dc.date.accessioned2021-06-16T08:33:04Z-
dc.date.available2019-03-18
dc.date.copyright2014-03-18
dc.date.issued2013
dc.date.submitted2013-12-09
dc.identifier.citationReference
1. Abbott, A., Cell culture: biology's new dimension. Nature, 2003. 424(6951): p. 870-2.
2. Pampaloni, F., E.G. Reynaud, and E.H. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol, 2007. 8(10): p. 839-45.
3. Elliott, N.T. and F. Yuan, A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci, 2011. 100(1): p. 59-74.
4. Page, H., P. Flood, and E.G. Reynaud, Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res, 2013. 352(1): p. 123-31.
5. Haycock, J.W., 3D cell culture: a review of current approaches and techniques. Methods Mol Biol, 2011. 695: p. 1-15.
6. Martin, I., D. Wendt, and M. Heberer, The role of bioreactors in tissue engineering. Trends Biotechnol, 2004. 22(2): p. 80-6.
7. Sun, T., et al., Development of a bioreactor for evaluating novel nerve conduits. Biotechnol Bioeng, 2008. 99(5): p. 1250-60.
8. Vanwezel, A.L., GROWTH OF CELL-STRAINS AND PRIMARY CELLS ON MICRO-CARRIERS IN HOMOGENEOUS CULTURE. Nature, 1967. 216(5110): p. 64-&.
9. Malda, J. and C.G. Frondoza, Microcarriers in the engineering of cartilage and bone. Trends Biotechnol, 2006. 24(7): p. 299-304.
10. Borg, D.J., et al., Functional and phenotypic characterization of human keratinocytes expanded in microcarrier culture. J Biomed Mater Res A, 2009. 88(1): p. 184-94.
11. Tashiro, S., K. Tsumoto, and E. Sano, Establishment of a microcarrier culture system with serial sub-cultivation for functionally active human endothelial cells. J Biotechnol, 2012. 160(3-4): p. 202-13.
12. Zhou, Y., et al., Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration. Tissue Eng Part A, 2011. 17(23-24): p. 2981-97.
13. Wu, X.B., et al., Preparation and characterization of chitosan porous microcarriers for hepatocyte culture. Hepatobiliary Pancreat Dis Int, 2011. 10(5): p. 509-15.
14. Chen, A.K., S. Reuveny, and S.K. Oh, Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnol Adv, 2013.
15. Martin, Y., et al., Microcarriers and their potential in tissue regeneration. Tissue Eng Part B Rev, 2011. 17(1): p. 71-80.
16. Wu, S.C., G.Y. Huang, and J.H. Liu, Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol Prog, 2002. 18(3): p. 617-22.
17. Rudolph, G., et al., Online monitoring of microcarrier based fibroblast cultivations with in situ microscopy. Biotechnol Bioeng, 2008. 99(1): p. 136-45.
18. Bleckwenn, N.A., W.E. Bentley, and J. Shiloach, Evaluation of production parameters with the vaccinia virus expression system using microcarrier attached HeLa cells. Biotechnol Prog, 2005. 21(2): p. 554-61.
19. Dutt, K., et al., Three-dimensional model of angiogenesis: coculture of human retinal cells with bovine aortic endothelial cells in the NASA bioreactor. Tissue Eng, 2003. 9(5): p. 893-908.
20. Dietrich, F. and P.I. Lelkes, Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis, 2006. 9(3): p. 111-25.
21. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
22. Schaffler, A. and C. Buchler, Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells, 2007. 25(4): p. 818-27.
23. Donna D. Alderman, R.W.A., Advances in Regenerative Medicine: High-density Platelet-rich Plasma and Stem Cell Prolotherapy For Musculoskeletal Pain. Practical Pain Management, 2011. 11(8): p. 58-75.
24. Gimble, J.M., A.J. Katz, and B.A. Bunnell, Adipose-derived stem cells for regenerative medicine. Circ Res, 2007. 100(9): p. 1249-60.
25. Yarak, S. and O.K. Okamoto, Human adipose-derived stem cells: current challenges and clinical perspectives. An Bras Dermatol, 2010. 85(5): p. 647-56.
26. Madonna, R., Y.J. Geng, and R. De Caterina, Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol, 2009. 29(11): p. 1723-9.
27. Heydarkhan-Hagvall, S., et al., Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs, 2008. 187(4): p. 263-74.
28. Bunnell, B.A., et al., Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 2008. 45(2): p. 115-20.
29. Yu, G., et al., Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol Biol, 2011. 702: p. 17-27.
30. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7.
31. Gronthos, S., et al., Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol, 2001. 189(1): p. 54-63.
32. Zhu, Y., et al., Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct, 2008. 26(6): p. 664-75.
33. Kim, W.S., et al., Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci, 2007. 48(1): p. 15-24.
34. Casteilla, L., et al., Plasticity of adipose tissue: a promising therapeutic avenue in the treatment of cardiovascular and blood diseases? Arch Mal Coeur Vaiss, 2005. 98(9): p. 922-6.
35. Bhang, S.H., et al., Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 2011. 32(11): p. 2734-47.
36. Moon, M.H., et al., Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem, 2006. 17(5-6): p. 279-90.
37. Suga, H., et al., Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg, 2010. 126(6): p. 1911-23.
38. Boo, L., et al., Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. J Mater Sci Mater Med, 2011. 22(5): p. 1343-56.
39. Tseng, P.C., et al., Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension. Biomaterials, 2012. 33(2): p. 556-64.
40. Declercq, H.A., et al., Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials, 2013. 34(4): p. 1004-17.
41. Flynn, L.E., The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 2010. 31(17): p. 4715-24.
42. Choi, J.S., et al., Fabrication of porous extracellular matrix scaffolds from human adipose tissue. Tissue Eng Part C Methods, 2010. 16(3): p. 387-96.
43. Brown, B.N., et al., Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods, 2011. 17(4): p. 411-21.
44. Choi, J.S., et al., Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release, 2009. 139(1): p. 2-7.
45. Kim, B.S., et al., Recellularization of decellularized human adipose-tissue-derived extracellular matrix sheets with other human cell types. Cell Tissue Res, 2012. 348(3): p. 559-67.
46. Turner, A.E., et al., The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials, 2012. 33(18): p. 4490-9.
47. Turner, A.E. and L.E. Flynn, Design and characterization of tissue-specific extracellular matrix-derived microcarriers. Tissue Eng Part C Methods, 2012. 18(3): p. 186-97.
48. Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
49. Cheng, N.C., S. Wang, and T.H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 2012. 33(6): p. 1748-58.
50. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63.
51. Gerlier, D. and N. Thomasset, Use of MTT colorimetric assay to measure cell activation. J Immunol Methods, 1986. 94(1-2): p. 57-63.
52. Oedayrajsingh-Varma, M.J., et al., Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 2006. 8(2): p. 166-77.
53. Mariman, E.C. and P. Wang, Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci, 2010. 67(8): p. 1277-92.
54. Park, I.S., et al., The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials, 2009. 30(36): p. 6835-43.
55. Rosen, E.D. and O.A. MacDougald, Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006. 7(12): p. 885-96.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58823-
dc.description.abstract近年來人們開始利用細胞進行組織工程相關研究,但是不足的細胞數量和來源常是阻礙實驗進行的原因之一,一般常用的細胞培養方法為在培養皿上的2D細胞擴增,此種方法操作容易,但可能會造成細胞的型態改變或因酵素作用破壞細胞外間質;為了改善此種情況,另有3D細胞培養方法,包含了利用旋轉培養瓶培養於微載體上培養細胞,微載體有高比表面積的優點,而此種培養環境也和生理環境較相似。
本研究希望利用BioLevitator TM此種3D培養系統,建立適合不同細胞(3T3纖維母細胞、Hela cell癌症細胞、BAEC內皮細胞、hASC人類脂肪幹細胞)生長的培養平台,比較這幾種細胞在2D/3D培養環境下的生長狀況,利用螢光染色我們可以知道這些細胞在3D環境下的細胞型態,由live/dead染劑也可知道當細胞長滿於微載體上時仍有高存活率。
hASC脂肪幹細胞因具分化能力,有相較於其他幹細胞更為方便的萃取方法和充足的來源等優點,為一在組織工程和在生醫學領域上新興的幹細胞來源,因此我們針對hASC比較其在2D/3D培養環境下的分化能力,將細胞先以骨分化和脂肪分化的培養液培養後,利用RT-PCR和染色量化的方式比較,雖然在基因表現上兩種培養方式對分化能力沒有顯著差異,但透過染色分化可得到在分化第21天時,3D培養後骨分化和脂肪分化的hASC都有較佳的分化表現。
我們希望能利用此一系統培養後的具有較佳分化能力的hASC,直接用於組織工程或在生醫學相關的研究上,或將此種細胞注射於組織受損的部位,以期達到幫助治療恢復的效果。
zh_TW
dc.description.abstractWith the emergence and promising evidence of tissue engineering in recent years, researchers have utilized stem cells for drug delivery, tissue repair and regenerative medicine related studies. However, limited amount of cell sources, especially stem cells is one of the challenges in studies of drug delivery tissue repair and regenerative medicine. Traditional 2D cell cultures have been widely used for in vitro cell proliferation and cell-based assays. Though easy to operate, they may have some drawbacks such as: unnatural flat-surface culture condition, cell phenotype changes…etc. 3D cultures have been viewed as a system which better mimic the physiological environment and improve cell culture condition at the same time. Microcarrier-bioreactor culture systems are one of the promising 3D culture methods for cell amplification while maintaining the phenotype of gene expression.
Here, we wanted to establish a 3D culture system for different cell types (3T3 cell, fibroblast; Hela cell, cancer cell; BAEC, endothelial cell; hASC, stem cell) using BioLevitatorTM as the bioreactor for microcarrier-based culture. Fluorescence staining was used for cell morphology observation on microcarrier during culture period, multilayers of cell proliferation could be seen in 3T3 cell and Hela cell; BAEC showed a single layer formation over the surface of the microcarrier; hASC prefers to grow in gaps between microcarriers. Live/dead staining indicated high viability of all the cell types as cell reach confluence over microcarrier.
Then we used adipogenic and osteogenic differential medium induction for hASCs previously cultured in 2D or 3D culture environment, and compared the differential potential via RT-PCR and staining quantification. Though no significant difference showed in gene expression, staining quantification indicated that cells cultured in 3D condition might have better differential potential at day 21 in either adipogenic or osteogenic lineage.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:33:04Z (GMT). No. of bitstreams: 1
ntu-102-R00524005-1.pdf: 3454413 bytes, checksum: c2a7199254607a470316259f3dc741a6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Tissue Engineering 1
1.1.1 2D Cell Culture 2
1.1.2 3D Cell Culture 3
1.1.2.1 Common 3D Culture Strategies 3
1.1.2.2 Microcarrier 6
1.2 Cell sources 9
1.2.1 3T3 Fibroblast cell 9
1.2.2 Hela cell 9
1.2.3 BAEC 9
1.2.4 hASC 10
1.2.4.1 hASC Extraction and Characterization 11
1.2.4.2 hASCs in 3D Culture 14
1.3 Motive and Aims 15
1.4 Research Framework 17
Chapter 2 Materials and Methods 18
2.1 Materials 18
2.1.1 Primary hASC Isolation and Culture 18
2.1.2 2D/3D Cell Culture 18
2.1.3 MTT Assay 19
2.1.4 Fluorescence Staining 19
2.1.5 Adipogenic Differentiation 20
2.1.6 Osteogenic Differentiation 20
2.1.7 Reverse Transcription –Polymerase Chain Reaction (RT-PCR) 20
2.1.8 Oil red O Staining and Quantification 21
2.1.9 Alizarin Red S Staining and Quantification 21
2.2 Experimental equipments 22
2.3 Solution formula 23
2.3.1 Phosphate Buffered Saline Solution (PBS), pH 7.4 23
2.3.2 Hank's Balanced Salts Modified (HBSS) 23
2.3.3 DMEM-HG Culture Medium 23
2.3.4 DMEM-LG Culture Medium 23
2.3.5 DMEM-HG/F-12 Culture Medium 24
2.3.6 MTT Assay Working Solution 24
2.3.7 Adipogenic Differentiation Medium 24
2.3.8 Osteogenic Differentiation Medium 25
2.3.9 Oil Red O Staining Solution 26
2.3.10 Alizarin Red S Staining Solution 26
2.3.11 Osteogenic Quantification Solution, CPC Buffer 27
2.4 Methods 28
2.4.1 Primary hASC Isolation 28
2.4.2 2D Cell Culture 29
2.4.3 MTT Assay for Cell Adhesion Ability on Microcarriers 29
2.4.4 3D Cell Culture 31
2.4.5 Cell Morphology Observation by Fluorescence Staining 32
2.4.6 Cell Replating 33
2.4.7 Reverse Transcription–Polymerase Chain Reaction (RT-PCR) 33
2.4.7.1 RNA Extraction 34
2.4.7.2 First Strand cDNA Synthesis by Reverse Transcript (RT) 35
2.4.7.3 Polymerase Chain Reaction (PCR) 35
2.4.7.4 Electrophoresis 37
2.4.8 2D/3D hASC Differentiation 37
2.4.8.1 Adipogenic/ Osteogenic Differentiation 37
2.4.8.2 Adipogenic Staining and Quantification 37
2.4.8.3 Osteogenic Staining and Quantification 38
2.4.9 Statistical Analysis 39
Chapter 3 Results & Discussions 41
3.1 hASC Isolation 41
3.2 Microcarrier Adhesion Assay 42
3.3 3D Cell Culture 43
3.3.1 3D culture Cell Morphology and live/dead staining 43
3.3.2 Cell Replating 46
3.3.3 3D culture Discussion 46
3.4 2D/3D Differentiation Comparison of hASC 48
3.4.1 RT-PCR Results 48
3.4.2 Adipogenic by Staining Results 49
3.4.3 Osteogenic Staining 49
Chapter 4 Conclusion 68
Chapter 5 Future Work 69
Appendix 70
Reference 75
dc.language.isoen
dc.subject3D細胞培養zh_TW
dc.subject脂肪幹細胞zh_TW
dc.subject微載體zh_TW
dc.subjecthuman adipose derived stem cell (hASC)en
dc.subject3D cultureen
dc.subjectmicrocarrieren
dc.title利用3D細胞培養系統維持脂肪幹細胞分化特性zh_TW
dc.titleMaintenance of hASC Differentiation Capabilities by 3D Cultureen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡偉博(Wei-Bor Tsai),謝學真(Hsyue-Jen Hsieh),廖英志(Ying-Chih Liao),趙玲(Ling Chao)
dc.subject.keyword3D細胞培養,微載體,脂肪幹細胞,zh_TW
dc.subject.keyword3D culture,microcarrier,human adipose derived stem cell (hASC),en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2013-12-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved