Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58818
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆(Feipei Lai)
dc.contributor.authorWei-Hsin Chenen
dc.contributor.author陳偉昕zh_TW
dc.date.accessioned2021-06-16T08:32:46Z-
dc.date.available2017-01-27
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-12-12
dc.identifier.citation1. Bartoshesky LE. Newborn Screening Tests. 2009; Archived at: http://kidshealth.org/parent/system/medical/newborn_screening_tests.html, http://www.webcitation.org/6CSJYu9CY.
2. The Children's Hospital at Westmead. The NSW Newborn Screening Programme. 2012; Archived at: http://www.chw.edu.au/prof/services/newborn/, http://www.webcitation.org/6CSKC26Tn.
3. Bodamer OA, Hoffmann GF, Lindner M. Expanded newborn screening in Europe 2007. Journal of inherited metabolic disease. 2007 Aug;30(4):439-44. PMID:17643197.
4. Greene A. Newborn Screening Tests. 1996; Archived at: http://www.drgreene.com/qa/newborn-screening-tests, http://www.webcitation.org/6CUdYdzg4.
5. Lee KG. Newborn screening tests. 2011; Archived at: http://www.nlm.nih.gov/medlineplus/ency/article/007257.htm, http://www.webcitation.org/6CUdMnnsX.
6. Therrell Jr BL. U.S. Newborn Screening Policy Dilemmas for the Twenty-First Century. Molecular genetics and metabolism. 2001;74(1–2):64-74.
7. Huang H-P, Chu K-L, Chien Y-H, Wei M-L, Wu S-T, Wang S-F, Hwu W-L. Tandem Mass Neonatal Screening in Taiwan—Report from One Center. Journal of the Formosan Medical Association. 2006;105(11):882-6.
8. CSHN Department of Health. Expanded Newborn Screening using Tandem Mass Spectrometry Financial, Ethical, Legal and Social Issues (FELSI). 2012; Archived at: http://www.newbornscreening.info/, http://www.webcitation.org/6CSLRrSY5.
9. Millington DS, Stevens RD. Acylcarnitines: analysis in plasma and whole blood using tandem mass spectrometry. Methods in molecular biology. 2011;708:55-72. PMID:21207283.
10. Millington DS. Rapid and effective screening for lysosomal storage disease: how close are we? Clinical chemistry. 2008 Oct;54(10):1592-4. PMID:18824571.
11. Vilarinho L, Rocha H, Sousa C, Marcao A, Fonseca H, Bogas M, Osorio RV. Four years of expanded newborn screening in Portugal with tandem mass spectrometry. Journal of inherited metabolic disease. 2010 Feb 23. PMID:20177789.
12. Department of Health Victoria Australia. Genetic Services in Victoria. 2012; Archived at: http://www.health.vic.gov.au/genetics/strategy.htm, http://www.webcitation.org/6CUe929WH.
13. Loukas YL, Soumelas GS, Dotsikas Y, Georgiou V, Molou E, Thodi G, Boutsini M, Biti S, Papadopoulos K. Expanded newborn screening in Greece: 30 months of experience. Journal of inherited metabolic disease. 2010 Aug 19. PMID:20721692.
14. Padilla CD, Therrell BL, Jr., Working Group of the Asia Pacific Society for Human Genetics on Consolidating Newborn Screening Efforts in the Asia Pacific R. Consolidating newborn screening efforts in the Asia Pacific region : Networking and shared education. Journal of community genetics. 2012 Jan;3(1):35-45. PMID:22271560.
15. Watson MS, Mann MY, Lloyd-Puryear MA, Rinaldo P, Howell RR, American College of Medical Genetics Newborn Screening Expert G. Newborn Screening: Toward a Uniform Screening Panel and System—Executive Summary. Pediatrics. 2006;117(Supplement 3):S296-S307.
16. Lindner M, Gramer G, Haege G, Fang-Hoffmann J, Schwab K, Tacke U, Trefz F, Mengel E, Wendel U, Leichsenring M, Burgard P, Hoffmann G. Efficacy and outcome of expanded newborn screening for metabolic diseases - Report of 10 years from South-West Germany *. Orphanet J Rare Dis. 2011 2011/06/20;6(1):1-10.
17. Niu D-M, Chien Y-H, Chiang C-C, Ho H-C, Hwu W-L, Kao S-M, Chiang S-H, Kao C-H, Liu T-T, Chiang H, Hsiao K-J. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. Journal of inherited metabolic disease. 2010 2010/10/01;33(2):295-305.
18. McHugh DMS, Cameron CA, Abdenur JE, Abdulrahman M, Adair O, Al Nuaimi SA, Ahlman H, Allen JJ, Antonozzi I, Archer S, Au S, Auray-Blais C, Baker M, Bamforth F, Beckmann K, Pino GB, Berberich SL, Binard R, Boemer F, Bonham J, Breen NN, Bryant SC, Caggana M, Caldwell SG, Camilot M, Campbell C, Carducci C, Cariappa R, Carlisle C, Caruso U, Cassanello M, Castilla AM, Ramos DEC, Chakraborty P, Chandrasekar R, Ramos AC, Cheillan D, Chien Y-H, Childs TA, Chrastina P, Sica YC, de Juan JAC, Colandre ME, Espinoza VC, Corso G, Currier R, Cyr D, Czuczy N, D'Apolito O, Davis T, de Sain-Van der Velden MG, Pecellin CD, Di Gangi IM, Di Stefano CM, Dotsikas Y, Downing M, Downs SM, Dy B, Dymerski M, Rueda I, Elvers B, Eaton R, Eckerd BM, El Mougy F, Eroh S, Espada M, Evans C, Fawbush S, Fijolek KF, Fisher L, Franzson L, Frazier DM, Garcia LRC, Bermejo MSG-V, Gavrilov D, Gerace R, Giordano G, Irazabal YG, Greed LC, Grier R, Grycki E, Gu X, Gulamali-Majid F, Hagar AF, Han L, Hannon WH, Haslip C, Hassan FA, He M, Hietala A, Himstedt L, Hoffman GL, Hoffman W, Hoggatt P, Hopkins PV, Hougaard DM, Hughes K, Hunt PR, Hwu W-L, Hynes J, Ibarra-Gonzalez I, Ingham CA, Ivanova M, Jacox WB, John C, Johnson JP, Jonsson Jj, Karg E, Kasper D, Klopper B, Katakouzinos D, Khneisser I, Knoll D, Kobayashi H, Koneski R, Kozich V, Kouapei R, Kohlmueller D, Kremensky I, la Marca G, Lavochkin M, Lee S-Y, Lehotay DC, Lemes A, Lepage J, Lesko B, Lewis B, Lim C, Linard S, Lindner M, Lloyd-Puryear MA, Lorey F, Loukas YL, Luedtke J, Maffitt N, Magee JF, Manning A, Manos S, Marie S, Hadachi SM, Marquardt G, Martin SJ, Matern D, Gibson SKM, Mayne P, McCallister TD, McCann M, McClure J, McGill JJ, McKeever CD, McNeilly B, Morrissey MA, Moutsatsou P, Mulcahy EA, Nikoloudis D, Norgaard-Pedersen B, Oglesbee D, Oltarzewski M, Ombrone D, Ojodu J, Papakonstantinou V, Reoyo SP, Park H-D, Pasquali M, Pasquini E, Patel P, Pass KA, Peterson C, Pettersen RD, Pitt JJ, Poh S, Pollak A, Porter C, Poston PA, Price RW, Queijo C, Quesada J, Randell E, Ranieri E, Raymond K, Reddic JE, Reuben A, Ricciardi C, Rinaldo P, Rivera JD, Roberts A, Rocha H, Roche G, Greenberg CR, Mellado JME, Juan-Fita MJ, Ruiz C, Ruoppolo M, Rutledge SL, Ryu E, Saban C, Sahai I, Garcia-Blanco MIS, Santiago-Borrero P, Schenone A, Schoos R, Schweitzer B, Scott P, Seashore MR, Seeterlin MA, Sesser DE, Sevier DW, Shone SM, Sinclair G, Skrinska VA, Stanley EL, Strovel ET, Jones ALS, Sunny S, Takats Z, Tanyalcin T, Teofoli F, Thompson JR, Tomashitis K, Domingos MT, Torres J, Torres R, Tortorelli S, Turi S, Turner K, Tzanakos N, Valiente AG, Vallance H, Vela-Amieva M, Vilarinho L, von Dobeln U, Vincent M-F, Vorster BC, Watson MS, Webster D, Weiss S, Wilcken B, Wiley V, Williams SK, Willis SA, Woontner M, Wright K, Yahyaoui R, Yamaguchi S, Yssel M, Zakowicz WM. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genetics in medicine : official journal of the American College of Medical Genetics. 2011;13(3):230-54.
19. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010 Oct 23;376(9750):1417-27. PMID:20971365.
20. Rocha JC, Martins MJ. Oxidative stress in phenylketonuria: future directions. Journal of inherited metabolic disease. 2012 May;35(3):381-98. PMID:22116469.
21. Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M, Falkenberg M, Jakobs C, Smith D, Struys E, von Dobeln U, Gustafsson CM, Lundeberg J, Wedell A. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. American journal of human genetics. 2011 Oct 7;89(4):507-15. PMID:21963049.
22. Naughten ER, Yap S, Mayne PD. Newborn screening for homocystinuria: Irish and world experience. European journal of pediatrics. 1998 Apr;157 Suppl 2:S84-7. PMID:9587032.
23. Baumgartner M. 3-Methylcrotonyl-CoA carboxylase deficiency. 2003; Archived at: https://www.orpha.net/data/patho/GB/uk-MCC.html, http://www.webcitation.org/6CbdJ2ClE.
24. Reference GH. 3-methylcrotonyl-CoA carboxylase deficiency. 2008.
25. Erhard R, Hong Hai D. Data Cleaning: Problems and Current Approaches. 2000.
26. Rosen P, Spalding SJ, Hannon MJ, Boudreau RM, Kwoh CK. Parent satisfaction with the electronic medical record in an academic pediatric rheumatology practice. Journal of medical Internet research. 2011;13(2):e40. PMID:21622292.
27. Jiang T, Xiao Y, Wang X, Li Y. Leveraging communication information among readers for RFID data cleaning. Proceedings of the 12th international conference on Web-age information management; Wuhan, China. 2035588: Springer-Verlag; 2011. p. 201-13.
28. Roman-Gonzalez A, Datcu M. Data cleaning: Approaches for earth observation image information mining. ESA-EUSC-JRC 2011 Conference Proceedings; 30 March 2011; Ispra, Italien: JRC; 2011. p. 117-20.
29. Eredics P, Dobrowiecki TP, editors. Data cleaning for an intelligent greenhouse. Applied Computational Intelligence and Informatics (SACI), 2011 6th IEEE International Symposium on; 2011 19-21 May 2011.10.1109/saci.2011.5873017.
30. Yoon D, Chang BC, Kang SW, Bae H, Park RW. Adoption of electronic health records in Korean tertiary teaching and general hospitals. International journal of medical informatics. 2012 Mar;81(3):196-203. PMID:22206619.
31. Avidan A, Weissman C. Record completeness and data concordance in an anesthesia information management system using context-sensitive mandatory data-entry fields. International journal of medical informatics. 2012 Mar;81(3):173-81. PMID:22244818.
32. Ohkubo S, Shimozawa K, Matsumoto M, Kitagawa T. Analysis of blood spot 17 alpha-hydroxyprogesterone concentration in premature infants--proposal for cut-off limits in screening for congenital adrenal hyperplasia. Acta paediatrica Japonica; Overseas edition. 1992 Apr;34(2):126-33. PMID:1621517.
33. Lott JA, Sardovia-Iyer M, Speakman KS, Lee KK. Age-dependent cutoff values in screening newborns for hypothyroidism. Clinical biochemistry. 2004 Sep;37(9):791-7. PMID:15329318.
34. Lindner M, Ho S, Fang-Hoffmann J, Hoffmann GF, Kolker S. Neonatal screening for glutaric aciduria type I: Strategies to proceed. Journal of inherited metabolic disease. 2006 2006/04/01;29(2-3):378-82.
35. Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004-2007). Journal of inherited metabolic disease. 2007 Aug;30(4):585-92. PMID:17643193.
36. Turgeon CT, Magera MJ, Cuthbert CD, Loken PR, Gavrilov DK, Tortorelli S, Raymond KM, Oglesbee D, Rinaldo P, Matern D. Determination of total homocysteine, methylmalonic acid, and 2-methylcitric acid in dried blood spots by tandem mass spectrometry. Clinical chemistry. 2010 Nov;56(11):1686-95. PMID:20807894.
37. Shigematsu Y, Hata I, Tajima G. Useful second-tier tests in expanded newborn screening of isovaleric acidemia and methylmalonic aciduria. Journal of inherited metabolic disease. 2010 Oct;33(Suppl 2):S283-8. PMID:20440648.
38. Wang LY, Chen NI, Chen PW, Chiang SC, Hwu WL, Lee NC, Chien YH. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests. BMC medical genetics. 2013;14:24. PMID:23394329.
39. Marquardt G, Currier R, McHugh DM, Gavrilov D, Magera MJ, Matern D, Oglesbee D, Raymond K, Rinaldo P, Smith EH, Tortorelli S, Turgeon CT, Lorey F, Wilcken B, Wiley V, Greed LC, Lewis B, Boemer F, Schoos R, Marie S, Vincent MF, Sica YC, Domingos MT, Al-Thihli K, Sinclair G, Al-Dirbashi OY, Chakraborty P, Dymerski M, Porter C, Manning A, Seashore MR, Quesada J, Reuben A, Chrastina P, Hornik P, Atef Mandour I, Atty Sharaf SA, Bodamer O, Dy B, Torres J, Zori R, Cheillan D, Vianey-Saban C, Ludvigson D, Stembridge A, Bonham J, Downing M, Dotsikas Y, Loukas YL, Papakonstantinou V, Zacharioudakis GS, Barath A, Karg E, Franzson L, Jonsson JJ, Breen NN, Lesko BG, Berberich SL, Turner K, Ruoppolo M, Scolamiero E, Antonozzi I, Carducci C, Caruso U, Cassanello M, la Marca G, Pasquini E, Di Gangi IM, Giordano G, Camilot M, Teofoli F, Manos SM, Peterson CK, Mayfield Gibson SK, Sevier DW, Lee SY, Park HD, Khneisser I, Browning P, Gulamali-Majid F, Watson MS, Eaton RB, Sahai I, Ruiz C, Torres R, Seeterlin MA, Stanley EL, Hietala A, McCann M, Campbell C, Hopkins PV, de Sain-Van der Velden MG, Elvers B, Morrissey MA, Sunny S, Knoll D, Webster D, Frazier DM, McClure JD, Sesser DE, Willis SA, Rocha H, Vilarinho L, John C, Lim J, Caldwell SG, Tomashitis K, Castineiras Ramos DE, Cocho de Juan JA, Rueda Fernandez I, Yahyaoui Macias R, Egea-Mellado JM, Gonzalez-Gallego I, Delgado Pecellin C, Garcia-Valdecasas Bermejo MS, Chien YH, Hwu WL, Childs T, McKeever CD, Tanyalcin T, Abdulrahman M, Queijo C, Lemes A, Davis T, Hoffman W, Baker M, Hoffman GL. Enhanced interpretation of newborn screening results without analyte cutoff values. Genetics in medicine : official journal of the American College of Medical Genetics. 2012 Jul;14(7):648-55. PMID:22766634.
40. NTUH Newborn Screening Center. Newborn Screening Items. 2012; Archived at: http://www.ntuh.gov.tw/gene/nbsc/screen/item.html, http://www.webcitation.org/6Cbb70VUe.
41. Teodoro D, Pasche E, Gobeill J, Emonet S, Ruch P, Lovis C. Building a Transnational Biosurveillance Network Using Semantic Web Technologies: Requirements, Design, and Preliminary Evaluation. Journal of medical Internet research. 2012;14(3):e73. PMID:22642960.
42. Ko L-F, Lin J-C, Chen C-H, Chang J-S, Lai F, Hsu K-P, Yang T-H, Cheng P-H, Wen C-C, Chen J-L, Hsieh S-L, editors. HL7 middleware framework for healthcare information system. e-Health Networking, Applications and Services, 2006 HEALTHCOM 2006 8th International Conference on; 2006 17-19 Aug. 2006.10.1109/health.2006.246437.
43. Yang TH, Cheng PH, Yang CH, Lai F, Chen CL, Lee HH, Hsu KP, Chen CH, Tan CT, Sun YS, editors. A Scalable Multi-tier Architecture for the National Taiwan University Hospital Information System based on HL7 Standard. Computer-Based Medical Systems, 2006 CBMS 2006 19th IEEE International Symposium on; 2006 0-0 0.10.1109/cbms.2006.27.
44. Phan C, editor Service Oriented Architecture (SOA) - Security Challenges and Mitigation Strategies. Military Communications Conference, 2007 MILCOM 2007 IEEE; 2007 29-31 Oct. 2007.10.1109/milcom.2007.4455012.
45. Cheng PH, Yang TH, Chen HS, Hsu KP, Chen SJ, Lai JS, editors. Codesign of a healthcare enterprise information portal and hospital information systems. Enterprise networking and Computing in Healthcare Industry, 2005 HEALTHCOM 2005 Proceedings of 7th International Workshop on; 2005 23-25 June 2005.10.1109/health.2005.1500501.
46. Hsieh SL, Feipei L, Cheng PH, Chen JL, Lee HH, Tsai WN, Weng YC, Hsieh SH, Hsu KP, Ko LF, Yang TH, Chen CH, editors. An Integrated Healthcare Enterprise Information Portal and Healthcare Information System Framework. Engineering in Medicine and Biology Society, 2006 EMBS '06 28th Annual International Conference of the IEEE; 2006 Aug. 30 2006-Sept. 3 2006.10.1109/iembs.2006.260715.
47. Hsieh SH, Hsieh SL, Weng YC, Yang TH, Feipei L, Cheng PH, Ping XO, Jan MY, Lin JC, Peng CH, Huang KH, Ko LF, Chen CH, Hsu KP, editors. Middleware based Inpatient Healthcare Information System. Bioinformatics and Bioengineering, 2007 BIBE 2007 Proceedings of the 7th IEEE International Conference on; 2007 14-17 Oct. 2007.10.1109/bibe.2007.4375721.
48. Weng Y-C, Hsieh S-L, Hsieh S-H, Lai F, editors. Design and Enhance a Dynamic Healthcare Portal Site. Web Intelligence and Intelligent Agent Technology Workshops, 2007 IEEE/WIC/ACM International Conferences on; 2007 5-12 Nov. 2007.10.1109/wi-iatw.2007.66.
49. Chen Y-W, Lin C-J. Combining SVMs with Various Feature Selection Strategies. In: Guyon I, Nikravesh M, Gunn S, Zadeh L, editors. Feature Extraction: Springer Berlin Heidelberg; 2006. p. 315-24.
50. Akay MF. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications. 2009;36(2, Part 2):3240-7.
51. Chen W-H, Chen H-P, Tseng Y-J, Hsu K-P, Hsieh S-L, Chien Y-H, Hwu W-L, Lai F, editors. Newborn Screening for Phenylketonuria: Machine Learning vs Clinicians. The 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining; 2012 Aug 2012; Istanbul, Turkey.
52. American Academy of Pediatrics. Newborn Screening Overview. 2010; Archived at: http://www.medicalhomeinfo.org/how/clinical_care/newborn_screening.aspx, http://www.webcitation.org/6Cj1n80vl.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58818-
dc.description.abstract新生兒篩檢是在早期判斷出新生兒代謝疾病的方法,透過新生兒的採血,由血液樣本進行串聯質譜儀的分析,可以及早防治與給予治療。為此我們在台大醫院開發了一套新生兒篩檢資料處理系統,這個系統包含了樣本收集、檢驗資料上傳分析、給予治療與追蹤病人的功能。在本研究中,我們使用了資料探勘的方法來提高新生兒代謝疾病的辨識率,首先,我們將2002年到2007年七月的紙本新生兒篩檢室的資料數位化,並且把所有新生兒的篩檢資料彙集成資料庫。在本研究中,我們的機器學習方法將應用於苯酮尿症、高甲硫胺酸血症與3-甲基巴豆醯輔酵素羧化酵素缺乏症,藉由嘗試新的特徵組合配合最佳特徵抽取的方法,我們得到了對不同的疾病的最佳模型,可以大幅的下降偽陽性的個案,並且可以正確的判斷出所有陽性的病人。由此可知,此系統可以準確的判斷新生兒篩檢相關疾病,並且可以更有效的利用醫療資源。zh_TW
dc.description.abstractA Hospital Information System that integrates screening data and interpretation of the data is routinely requested. However, the accuracy of disease classification may be low because of the disease characteristics and analytes used for classification. The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system has been designed and deployed based on a Service-Oriented Architecture framework under the Web Services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. In this study, machine learning classification was used to predict the following: phenylketonuria, hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase deficiency. The classification methods used 435,682 newborn samples collected at the Center between 2006 and 2012. These samples include 229 newborns with values over the diagnostic cutoffs and 1822 over the screening cutoffs but that do not meet the diagnostic cutoffs. The feature selection strategies were defined as follows. The original 35 analytes and the manifested features are ranked based on the F-score. Next, the combinations of the top 20 ranked features were selected as input features to Support Vector Machines classifiers to obtain optimal feature sets. Finally, the feature sets were tested using 5-fold cross validation and the optimal models were generated. The datasets collected in year 2011 and 2012 were utilized as the predicting cases. By adopting the results of this study, the number of suspected cases could be reduced dramatically. Furthermore, the results of the research have been compared with those of other methodologies.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:32:46Z (GMT). No. of bitstreams: 1
ntu-102-D97945014-1.pdf: 5205390 bytes, checksum: bfcbc19d1091fa98ad8d0baaf5bd6b68 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsCONTENTS
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Newborn Screening Program 1
1.2 NTUH Newborn Screening Data 2
1.3 Cutoff Method 3
1.4 Aim of This Study 4
Chapter 2 Data Collection 5
2.1 Data Collection and Digitization 5
2.2 Data Collection and Correction 7
2.2.1 Data Transfer Algorithm and Process 7
2.2.2 Error Identifications and Corrections 8
2.3 Error Statistics 9
2.4 Data Statistics 10
Chapter 3 Materials and Methods for Metabolic Diseases 26
3.1 System Architecture 29
3.2 Data Preparation 31
3.3 Feature Selection Strategies 32
3.3.1 Support Vector Machines 32
3.3.2 Post-Analytical Tools 35
3.3.3 Data Training and Prediction 36
Chapter 4 Results 42
4.1 Newborn Screening Hospital Information System 42
4.2 Training Results 42
4.2.1 Optimal Feature Sets 42
4.3 Prediction Results 50
Chapter 5 Discussion 55
5.1 NTUH Newborn Screening Hospital Information System 55
5.2 Proposed Approach 58
5.3 Limitations 59
5.4 Future Work 60
Chapter 6 Conclusion 61
References 62
Appendix 67
LIST OF FIGURES
Figure 1. Neonatal screening data digitization process. 5
Figure 2. Data transformation algorithm 7
Figure 3. Error statistics 10
Figure 4. Trend of MS/MS analytes 24
Figure 5. Workflow of newborn screening processes in NTUH 26
Figure 6. The system architecture of the Web-based newborn screening system 29
Figure 7. The SVM methodology 33
Figure 8. Post-analytical tools example for GA-II 35
Figure 9. Post-analytical tools example for GA-II 36
Figure 10. Training and prediction strategies 37
Figure 11. Boxplot of Phe 38
Figure 12. Feature selection strategies by relevant features 39
Figure 13. The boxplot of the selected markers of PKU 44
Figure 14. The boxplot of the selected markers of Hypermethioninemia 47
Figure 15. The boxplot of the selected markers of 3-MCC deficiency 50
Figure 16. Snapshot of newborn screening hospital information system 56
Figure 17. The collaborating, interoperability among NSHIS subsystems. 57
LIST OF TABLES
Table I. Definition of noisy data 9
Table II. Accumulated species concentrations over the period 2002-2012 12
Table III. Summary of the disease data 31
Table IV. Manifested disease features 40
Table V. Selected markers of three diseases 42
Table VI. Comparison of the current method vs. the proposed method in 2011 51
Table VII. Comparison of the current method vs. the proposed method in 2011 52
Table VIII. Comparison of the current method vs. the proposed method in 2012 52
Table IX. Comparison of current method vs. SVM without Feature Selection, SVM with F-score, proposed method and post-analytical tools in 2011 53
dc.language.isoen
dc.subject網路服務zh_TW
dc.subject新生兒篩檢zh_TW
dc.subject串聯質譜儀zh_TW
dc.subject醫療資訊系統zh_TW
dc.subject新生兒代謝疾病zh_TW
dc.subject資料探勘zh_TW
dc.subjectData Miningen
dc.subjectNewborn Screeningen
dc.subjectTandem Mass Spectrometryen
dc.subjectHospital Information Systemsen
dc.subjectInborn Errors of Metabolismen
dc.subjectWeb-Based Servicesen
dc.title以網路服務為基礎的新生兒代謝疾病篩檢系統zh_TW
dc.titleA Web-Service-Based Newborn Screening System for Metabolic Diseasesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.coadvisor胡務亮(Wuh-Liang Hwu),簡穎秀(Yin-Hsiu Chien)
dc.contributor.oralexamcommittee趙坤茂(Kun-Mao Chao),歐陽彥正(Yen-Jen Oyang),陳澤雄(Tzer-Shyong Chen),鐘玉芳(Yu-Fang Chung),高成炎(Cheng-Yan Kao)
dc.subject.keyword網路服務,新生兒篩檢,串聯質譜儀,醫療資訊系統,新生兒代謝疾病,資料探勘,zh_TW
dc.subject.keywordWeb-Based Services,Newborn Screening,Tandem Mass Spectrometry,Hospital Information Systems,Inborn Errors of Metabolism,Data Mining,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2013-12-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved