請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58817完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭智馨(Chih-Hsin Cheng) | |
| dc.contributor.author | Hung-Ming Su | en |
| dc.contributor.author | 蘇泓銘 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:32:42Z | - |
| dc.date.available | 2014-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-12-12 | |
| dc.identifier.citation | 李明仁 (主編) (2010) 育林實務手冊。農委會林務局。349頁。
林國銓、黃菊美、王巧萍、張乃航 (2004) 六龜台灣杉人工林碳和氮的累積和分布。台灣林業科學 19(3):225-235。 林務局 (1995) 第三次台灣森林資源及土地利用調查。農委會林務局。258頁。 林務局 (2006)林務局年報. 沈勇強 (1984)台大實驗林天然保護林區植群生態之研究。國立台灣大學森林學系。台北。 柯光瑞 (2005)台灣北部現行耕作制度對農田土壤溫室氣體(CO2、CH4、N2O)釋出之影響。國立臺灣大學農業化學研究系。66頁。台北。 洪志祐 (2012)溪頭柳杉老齡林生態系統碳貯存量與淨生態系生產力。國立臺灣大學森林環境暨資源學系。53頁。台北。 高強 (1982)台灣柳杉最佳疏伐與輪伐期之經濟分析。國立成功大學工業管理學系。 60頁。台南。 梁晏綾 (2007)台灣中部溪頭地區混沉降與霧化學特性之研究。國立彰化師範大學地理系。彰化。 楊榮啟 (1975)台灣實驗林產柳杉之生長與收穫的研究。台灣大實驗林研究報告 166:1-149。 鄭森松、陳信佑 (2009)國立臺灣大學生物資源暨農學院實驗林管理處六十五年之氣象:1941-2005。國立臺灣大學生物資源暨農學院實驗林管理處。 顏添明、李久先、黃凱洛、劉兆昌 (2004)杉木人工林成熟林分林木生長及生物量之探討。中華林學季刊 37(2):157-168。 顏添明、哀力䪸、李介祿、李久先、黃凱洛 (2009)台灣主要三種針葉樹種地上部之碳含量及碳貯存量。台灣林業科學 24(2):91-102。 顏添明、黃凱洛 (2006)杉木地上部碳儲存量之推估。台灣林業科學 21(2):273-80。 Adamek, M., Corre, M. D. & Holscher, D. (2009). Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. Journal of Tropical Ecology 25(6): 637-647. Ahlstrom, K., Persson, H. & Borjesson, I. (1988). Fertilization in a mature Scots pine (Pinus sylvestris L.) stand—effects on fine roots. Plant and Soil 106(2): 179-190. Barnes, B. V. & Spurr, S. H. (1998). Forest ecology. New York: Wiley. Basiliko, N., Khan, A., Prescott, C. E., Roy, R. & Grayston, S. J. (2009). Soil greenhouse gas and nutrient dynamics in fertilized western Canadian plantation forests. Canadian Journal of Forest Research 39(6): 1220-1235. Bodelier, P. L. E. & Laanbroek, H. J. (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology 47(3): 265-277. Brady, N.N. & Will, R.R. (2008) The Nature and Properties of Soils, 14th Edition. Prentice Hall Inc, New Jersey, USA. Campo, J. & Vazquez-Yanes, C. (2004). Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatan, Mexico. Ecosystems 7(3): 311-319. Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D. & Bowden, R. D. (1995). Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles 9(1): 1-10. Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N., Santos, J. d., Araujo, A. C., Kruijt, B., Nobre, A. D. & Trumbore, S. E. (2004). Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecological Applications 14(4): 72-88. Cheng, C. H., Hung, C. Y., Chen, C. P. & Pei, C. W. (2013). Biomass carbon accumulation in aging Japanese cedar plantations in Xitou of central Taiwan. Botanical Studies.in press. Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R. & Ni, J. (2001). Measuring net primary production in forests: concepts and field methods. Ecological Applications 11(2): 356-370. Cleveland, C. C. & Townsend, A. R. (2006). Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America 103(27): 10316-10321. Curtis, P. S., Hanson, P. J., Bolstad, P., Barford, C., Randolph, J. C., Schmid, H. P. & Wilson, K. B. (2002). Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology 113(1–4): 3-19. Cusack, D. F., Silver, W. L., Torn, M. S. & McDowell, W. H. (2011). Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry 104(1-3): 203-225. Dalal, R. C., Wang, W., Robertson, G. P. & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Soil Research 41(2): 165-195. E. Mirmanto, J. P., J. Green, L. Nagy and Suriantata (1999). Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos Trans R Soc Lond B Biol Sci. 354(1391): 1825–1829. Epron, D., Bosc, A., Bonal, D. & Freycon, V. (2006). Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. Journal of Tropical Ecology 22(5): 565-574. Etzold, S., Waldner, P., Thimonier, A., Schmitt, M. & Dobbertin, M. (2013). Tree growth in Swiss forests between 1995 and 2010 in relation to climate and stand conditions: Recent disturbances matter. Forest Ecology and Management.in press. Giardina, C., Binkley, D., Ryan, M., Fownes, J. & Senock, R. (2004). Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139(4): 545-550. Harrington, R. A., Fownes, J. H. & Vitousek, P. M. (2001). Production and resource use efficiencies in N- and P-limited tropical forests: A comparison of responses to long-term fertilization. Ecosystems 4(7): 646-657. IPCC (2001).Climate Change 2001: Working Group I: The Scientific Basis. Cambridge: Cambridge University. IPCC (2007).Climate Change 2007: Working Group I: The Physical Science Basis. Cambridge: Cambridge University. Jonsson, J. A. & Sigurdsson, B. D. (2010). Effects of early thinning and fertilization on soil temperature and soil respiration in a poplar plantation. Icelandic Agricultural Sciences 23(1): 97-109. Kim, Y. S., Imori, M., Watanabe, M., Hatano, R., Yi, M. J. & Koike, T. (2012). Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan. Atmospheric Environment 46(0): 36-44. Kochsiek, A., Tan, S. & Russo, S. (2013). Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecology: 1-14. Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H. & Wright, S. J. (2009). Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Global Change Biology 15(8): 2049-2066. Le Mer, J. & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37(1): 25-50. Lee, K.-H. & Jose, S. (2003). Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management 185(3): 263-273. Lessard, R., Rochette, P., Topp, E., Pattey, E., Desjardins, R. L. & Beaumont, G. (1994). Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Canadian Journal of Soil Science 74(2): 139-146. Liang, Y.L., Lin, T.C., Hwong, J.L., Lin, N.H. & Wang, C.P. (2009). Fog and precipitation chemistry at amid-land forest in central Taiwan. J. Environ. Qual. 38(2): 627-636. Linn, D. M. & Doran, J. W. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal48(6): 1267-1272. Liu, L. & Greaver, T. L. (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters 12(10): 1103-1117. Luo, G. J., Kiese, R., Wolf, B. & Butterbach-Bahl, K. (2013). Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences 10(5): 3205-3219. Maljanen, M., Jokinen, H., Saari, A., Strommer, R. & Martikainen, P. J. (2006). Methane and nitrous oxide fluxes, and carbon dioxide production in boreal forest soil fertilized with wood ash and nitrogen. Soil Use and Management 22(2): 151-157. Maljanen, M., Liikanen, A., Silvola, J. & Martikainen, P. J. (2003). Methane fluxes on agricultural and forested boreal organic soils. Soil Use and Management 19(1): 73-79. Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. communications in soil science and plant analysis 15(12): 1409-1416. Milchunas, D. (2009). Estimating Root Production: Comparison of 11 Methods in Shortgrass Steppe and Review of Biases. Ecosystems 12(8): 1381-1402. Mizoguchi, Y. (2009). Study on variability characteristics of forest floor CO2 efflux. Bulletin of the Forestry and Forest Products Research Institute, Ibaraki (410): 1-50. Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27(0): 31-36. Ontl, T. A., Hofmockel, K. S., Cambardella, C. A., Schulte, L. A. & Kolka, R. K. (2013). Topographic and soil influences on root productivity of three bioenergy cropping systems. New Phytologist.in press. Samuelson, L., Mathew, R., Stokes, T., Feng, Y., Aubrey, D. & Coleman, M. (2009). Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. Forest Ecology and Management 258(11): 2431-2438. Saunders, M., Tobin, B., Black, K., Gioria, M., Nieuwenhuis, M. & Osborne, B. A. (2012). Thinning effects on the net ecosystem carbon exchange of a Sitka spruce forest are temperature-dependent. Agricultural and Forest Meteorology 157: 1-10. Schmer, M. R., Liebig, M. A., Hendrickson, J. R., Tanaka, D. L. & Phillips, R. L. (2012). Growing season greenhouse gas flux from switchgrass in the northern great plains. Biomass and Bioenergy 45(0): 315-319. Schnell, S. & King, G. M. (1994). Mechanistic Analysis of Ammonium Inhibition of Atmospheric Methane Consumption in Forest Soils. Applied and Environmental Microbiology 60(10): 3514-3521. Steinkamp, R., Butterbach-Bahl, K. & Papen, H. (2001). Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biology and Biochemistry 33(2): 145-153. Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. (1989). Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341(6240): 314-316. Strachan IB, A. O., Palmason F, Torgeirsson H, Siguresson BD, Sigureardottir H, Novoselac G (1998). Soil of the Gunnarsholt experimental plantation. Icelandic Agricultural Sciences 12: 27-38. Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. (2006). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biology 12(3): 546-560. Tanner, E. V. J. (1980). Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology 68(2): 573-588. Tanner, E. V. J., Kapos, V., Freskos, S., Healey, J. R. & M., T. A. (1990). Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology 6: 231-238. Tanner, E. V. J., Kapos, V. & W., F. (1992). Nitorgen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73(1): 78-86. Templer, P. H., Silver, W. L., Pett-Ridge, J., M. DeAngelis, K. & Firestone, M. K. (2008). Plantandmicrobialcontrolsonnitrogen retentionandlossinahumidtropicalforest. Ecology 89(11): 3030-3040. Tietema, A., Warmerdam, B., Lenting, E. & Riemer, L. (1992). Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: Moisture and pH. Plant and Soil 147(1): 69-78. Tu, L. H., Hu, T. X., Zhang, J., Li, X. W., Hu, H. L., Liu, L. & Xiao, Y. L. (2013). Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biology and Biochemistry 58: 255-264. van den Pol-van Dasselaar, A., van Beusichem, M. L. & Oenema, O. (1999). Effects of nitrogen input and grazing on methane fluxes of extensively and intensively managed grasslands in the Netherlands. Biology and Fertility of Soils 29(1): 24-30. van Zwieten, L., Kimber, S., Morris, S., Downie, A., Berger, E., Rust, J. & Scheer, C. (2010). Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Research 48(7): 555-568. Vitousek, P. & Howarth, R. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13(2): 87-115. Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D. & Matson, P. A. (1987). Biological invasion by myrica faya alters ecosystem development in Hawaii. Science 238(4828): 802-804. Wang, H., Liu, S., Wang, J., Shi, Z., Lu, L., Zeng, J., Ming, A., Tang, J. & Yu, H. (2013). Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management 300(0): 4-13. Whalen, S. C., Reeburgh, W. S. & Sandbeck, K. A. (1990). Rapid methane oxidation in a landfill cover soil. Applied and Environmental Microbiology 56(11): 3405-3411. Xu, X., Han, L., Luo, X., Liu, Z. & Han, S. (2009). Effects of nitrogen addition on dissolved N2O and CO2, dissolved organic matter, and inorganic nitrogen in soil solution under a temperate old-growth forest. Geoderma 151(3–4): 370-377. Yashiro, Y., Lee, N.-Y., Ohtsuka, T., Shizu, Y., Saitoh, T. & Koizumi, H. (2010). Biometric-based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. Journal of Plant Research 123(4): 463-472. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58817 | - |
| dc.description.abstract | 本研究目的為探討溪頭營林區4個人工針葉林包含25年生台灣杉 (TC88)、32年生巒大杉(CL81)、34年生巒大杉(CL79)及42年生柳杉 (CJ71) 森林淨初級生產力 (Net primary production, NPP),以及施加硝酸銨 (NH4NO3) 150 kg N ha-1,對於NPP之影響,在CL81以密閉罩法 (Closed chamber method) 測量三種溫室氣體 (N2O、CH4、CO2) 施肥後的釋放,以及量測土壤水溶液中離子濃度、電導度及pH值,觀察施肥後養分動態變化,最後將三種溫室氣體及NPP轉換成GWP (Global Warming Potential),評估施肥對於之整體影響。
研究結果顯示,在NPP部分,4個樣地平均為8.7 ± 3.7 Mg C ha-1 yr-1,施肥後NPP都沒有顯著差異 (p>0.05)。在溫室氣體部分,N2O在施肥後第5天施肥樣區與未施肥樣區相比,釋放有顯著差異 (p<0.05);CH4在施肥後第15天釋放有顯著差異 (p<0.05);CO2釋放則在施肥後沒有顯著差異。在土壤溶液部分,土壤溶液pH值受到施肥影響,在2012年1/21施肥後,3、4、5月施肥樣區與未施肥樣區相比皆有顯著差異(p<0.05);土壤溶液電導度在2、3、4、5月施肥樣區與未施肥樣區相比有顯著差異;土壤溶液離子部分,NO3--N濃度在2012年2、3、4、5月有差異,而NH4+-N濃度則在施肥後沒有顯著差異。 總結來說,在施肥後的一年內,林分可能受限於針葉樹的生長速度較為緩慢或是林地內存在非氮元素之外的生長限制因子,因此對於NPP並沒有顯著影響。但是若轉換成GWP來看,溪頭巒大杉人工林施肥之後,NPP及GHGs雖未達顯著標準,但對於溫室效應無負面影響。 | zh_TW |
| dc.description.abstract | The purposes of this study were two. The first was to estimate net primary productionand fluxes of three greenhouse gases includingN2O, CH4 and CO2 of coniferous plantations in Xitou Experimental Forest. The second was to compare changes of net primary production and greenhouse gases emission in unfertilized and fertilized plots with NH4NO3 (150 kg N ha-1).There were four sitesin Xitou including the plantations planted Taiwania cryptomerioides in 1988 (TC88), Cunninghamia lanceolata var. konishii in 1981 (CL81) and 1979 (CL79) as well asCryptomeria japonica in 1971 (CJ71).Soil solutions also gathered to analysis amount of NO3--N, NH4+-N, conductivity and pH after fertilization in CL81. Finally, we transmitted NPP, fluxes of greenhouse gases to Global Warming Potential to assessed effects of fertilization in CL81.
Results of NPP in TC88, CL81, CL79, and CJ71 averaged 8.7 ± 3.7 Mg C ha-1 yr-1 and showed no significant different between unfertilized and fertilized plots. The flux of N2O showed significance difference between unfertilized and fertilized plots in the 5th dayafter we added NH4NO3. On the other hand, there was significance difference of the flux of CH4 between unfertilized and fertilized plots in the 15th day after fertilization. But there was no significance difference of the flux of CO2. Conductivity and NO3--N concentration in soil solution were significance difference between unfertilized and fertilized plots in February, March, April and May. The pH value of soil solution was significance difference between unfertilized and fertilized plots in March, April and May. However, there was no significance difference in NH4+-N concentration after nitrate ammonium addition. In conclusion, we speculate about the reasons for no significance differences of NPP after fertilization are that the growth of conifer is slow and there are other limiting factors, which restrict the growths of stands. Although the results of GWP and GHGs are not significance between control and fertilization, there areno negative effects on global warming. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:32:42Z (GMT). No. of bitstreams: 1 ntu-102-R00625015-1.pdf: 1039191 bytes, checksum: b6a78d49acb8dbe95a744bc88d1b28aa (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 目錄 iv 表目錄 vi 圖目錄 vii 1.前言 1 2.材料方法 4 2.1樣區介紹 4 2.2 林分調查 5 2.3土壤基本性質與有效性養分分析 5 2.4淨初級生產力 (Net Primary Production, NPP) 8 2.5土壤溶液採集及分析 9 2.6土壤溫室氣體採集及分析 10 2.7土壤溫室氣體之釋放量估算 11 2.8 全球暖化潛勢(Global Warming Potential, GWP) 12 2.9統計分析 13 3.結果 14 3.1林木生長量 14 3.2淨初級生產力 14 3.3土壤溶液 16 3.3.1土壤溶液NO3--N濃度 16 3.3.2土壤溶液NH4+-N濃度 17 3.3.3土壤溶液pH值 17 3.3.4土壤溶液電導度 17 3.4溫室氣體釋放 17 3.4.1 氧化亞氮 (N2O) 17 3.4.2 甲烷 (CH4) 18 3.4.3 二氧化碳 (CO2) 18 3.5全球暖化潛勢 (Global Warming Potential, GWP) 19 4.討論 20 4.1施肥對淨初級生產力的影響 20 4.2施肥對土壤溶液的影響 21 4.3施肥對溫室氣體釋放量的影響 22 4.3.1 氧化亞氮(N2O) 22 4.3.2 甲烷(CH4) 23 4.3.3 二氧化碳(CO2) 24 5.結論 26 6.引用文獻 27 附錄 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氧化亞氮 | zh_TW |
| dc.subject | 土壤溶液 | zh_TW |
| dc.subject | 全球暖化潛勢 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 淨初級生產力 | zh_TW |
| dc.subject | 施肥 | zh_TW |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | GWP | en |
| dc.subject | NPP | en |
| dc.subject | CO2 | en |
| dc.subject | N2O | en |
| dc.subject | CH4 | en |
| dc.subject | soil solution | en |
| dc.subject | fertilization | en |
| dc.title | 溪頭人工針葉林淨初級生產力與土壤溫室氣體釋放 | zh_TW |
| dc.title | Net primary production and GHGs emission of coniferous plantations in Xitou, central Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳財輝(Tsai-Hui Chen),王立志(Lih-Jih Wang),劉瓊霦(Chiung-Pin Liu) | |
| dc.subject.keyword | 施肥,淨初級生產力,二氧化碳,氧化亞氮,甲烷,全球暖化潛勢,土壤溶液, | zh_TW |
| dc.subject.keyword | fertilization,NPP,CO2,N2O,CH4,soil solution,GWP, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-12-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
