請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58812完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡忠怡(Chung-Yi Hu) | |
| dc.contributor.author | Sheng-Kai Chang | en |
| dc.contributor.author | 張勝凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:32:25Z | - |
| dc.date.available | 2019-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-12-15 | |
| dc.identifier.citation | 參考文獻
1. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-54 (1993). 2. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-62 (1993). 3. Stefani, G. & Slack, F.J. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9, 219-30 (2008). 4. Kim, V.N. & Nam, J.W. Genomics of microRNA. Trends Genet 22, 165-73 (2006). 5. Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-85 (2005). 6. Alvarez-Garcia, I. & Miska, E.A. MicroRNA functions in animal development and human disease. Development 132, 4653-62 (2005). 7. Ambros, V. The functions of animal microRNAs. Nature 431, 350-5 (2004). 8. Miska, E.A. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15, 563-8 (2005). 9. Deng, S., Calin, G.A., Croce, C.M., Coukos, G. & Zhang, L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7, 2643-6 (2008). 10. Shcherbata, H.R. et al. The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 5, 172-5 (2006). 11. Carleton, M., Cleary, M.A. & Linsley, P.S. MicroRNAs and cell cycle regulation. Cell Cycle 6, 2127-32 (2007). 12. Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9-14 (2008). 13. Kim, D.H., Saetrom, P., Snove, O., Jr. & Rossi, J.J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 105, 16230-5 (2008). 14. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-60 (2004). 15. Borchert, G.M., Lanier, W. & Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13, 1097-101 (2006). 16. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126-39 (2009). 17. Winter, J., Jung, S., Keller, S., Gregory, R.I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228-34 (2009). 18. Kim, V.N. Small RNAs: classification, biogenesis, and function. Mol Cells 19, 1-15 (2005). 19. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-33 (2009). 20. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64-71 (2008). 21. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63 (2008). 22. Ambros, V. & Horvitz, H.R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409-416 (1984). 23. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39, 380-5 (2007). 24. Bernstein, E. et al. Dicer is essential for mouse development. Nat Genet 35, 215-7 (2003). 25. Makeyev, E.V., Zhang, J., Carrasco, M.A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27, 435-48 (2007). 26. Chen, J.F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 105, 2111-6 (2008). 27. Takane, K. et al. Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals. BMC Genomics 11, 101 (2010). 28. Sempere, L.F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5, R13 (2004). 29. Kawai, J. et al. Functional annotation of a full-length mouse cDNA collection. Nature 409, 685-90 (2001). 30. Caygill, E.E. & Johnston, L.A. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 18, 943-50 (2008). 31. Le, M.T. et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23, 862-76 (2009). 32. Wu, L. & Belasco, J.G. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol.Cell Biol. 25, 9198-9208 (2005). 33. Le, M.T. et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol.Cell Biol. 29, 5290-5305 (2009). 34. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat.Cell Biol. 10, 987-993 (2008). 35. Liang, L. et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B. Hepatology 52, 1731-1740 (2010). 36. Iorio, M.V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65, 7065-70 (2005). 37. Nam, E.J. et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14, 2690-5 (2008). 38. Hui, A.B. et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 16, 1129-39 (2010). 39. Visone, R. et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26, 7590-5 (2007). 40. Xu, N. et al. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem 287, 29899-908 (2012). 41. Shiiba, M. et al. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. Br J Cancer 108, 1817-21 (2013). 42. Kappelmann, M., Kuphal, S., Meister, G., Vardimon, L. & Bosserhoff, A.K. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 32, 2984-91 (2013). 43. Feliciano, A. et al. miR-125b Acts as a Tumor Suppressor in Breast Tumorigenesis via Its Novel Direct Targets ENPEP, CK2-alpha, CCNJ, and MEGF9. PLoS One 8, e76247 (2013). 44. Cui, F. et al. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem 30, 1310-8 (2012). 45. Bhattacharjya, S. et al. miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression. Cell Death Differ 20, 430-42 (2013). 46. Wu, N. et al. miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett 586, 3831-9 (2012). 47. Amir, S. et al. Oncomir miR-125b suppresses p14(ARF) to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS One 8, e61064 (2013). 48. Pinto, M.T. et al. Overexpression of hsa-miR-125b during osteoblastic differentiation does not influence levels of Runx2, osteopontin, and ALPL gene expression. Braz J Med Biol Res 46, 676-80 (2013). 49. Sonoki, T., Iwanaga, E., Mitsuya, H. & Asou, N. Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19, 2009-10 (2005). 50. Bousquet, M. et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205, 2499-506 (2008). 51. Chapiro, E. et al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia 24, 1362-4 (2010). 52. O'Connell, R.M. et al. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci U S A 107, 14235-40 (2010). 53. Bousquet, M., Harris, M.H., Zhou, B. & Lodish, H.F. MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci U S A 107, 21558-63 (2010). 54. Enomoto, Y. et al. Emu/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia 25, 1849-56 (2011). 55. Brodeur, G.M. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3, 203-216 (2003). 56. Maris, J.M. Recent advances in neuroblastoma. New England Journal of Medicine 362, 2202-2211 (2010). 57. Gurney, J.G., Severson, R.K., Davis, S. & Robison, L.L. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer 75, 2186-2195 (1995). 58. Brodeur, G.M. Neuroblastoma: biological insights into a clinical enigma. Nat.Rev.Cancer 3, 203-216 (2003). 59. Cohn, S.L. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J.Clin.Oncol. 27, 289-297 (2009). 60. Caren, H. et al. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc.Natl.Acad.Sci.U.S.A 107, 4323-4328 (2010). 61. Kyo, Y. et al. Identification of therapy-sensitive and therapy-resistant neuroblastoma subtypes in stages III, IVs and IV. Cancer Lett. 306, 27-33 (2011). 62. Peuchmaur, M. et al. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 98, 2274-81 (2003). 63. De Bernardi, B. et al. Epidural compression in neuroblastoma: Diagnostic and therapeutic aspects. Cancer Lett 228, 283-99 (2005). 64. De Bernardi, B. et al. Neuroblastoma with symptomatic spinal cord compression at diagnosis: treatment and results with 76 cases. J Clin Oncol 19, 183-90 (2001). 65. Katzenstein, H.M., Kent, P.M., London, W.B. & Cohn, S.L. Treatment and outcome of 83 children with intraspinal neuroblastoma: the Pediatric Oncology Group experience. J Clin Oncol 19, 1047-55 (2001). 66. Quinn, J.J. & Altman, A.J. The multiple hematologic manifestations of neuroblastoma. Am J Pediatr Hematol Oncol 1, 201-5 (1979). 67. Maris, J.M., Hogarty, M.D., Bagatell, R. & Cohn, S.L. Neuroblastoma. The Lancet 369, 2106-2120 (2007). 68. D'Angio, G.J., Evans, A.E. & Koop, C.E. Special pattern of widespread neuroblastoma with a favourable prognosis. Lancet 1, 1046-9 (1971). 69. Matthay, K.K. Stage 4S neuroblastoma: what makes it special? J Clin Oncol 16, 2003-6 (1998). 70. Shimada, H. et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children's Cancer Group. Cancer 92, 2451-61 (2001). 71. Maris, J.M. & Matthay, K.K. Molecular biology of neuroblastoma. J.Clin.Oncol. 17, 2264-2279 (1999). 72. Attiyeh, E.F. et al. Chromosome 1p and 11q Deletions and Outcome in Neuroblastoma. New England Journal of Medicine 353, 2243-2253 (2005). 73. Spitz, R., Hero, B., Ernestus, K. & Berthold, F. Deletions in chromosome arms 3p and 11q are new prognostic markers in localized and 4s neuroblastoma. Clin Cancer Res 9, 52-8 (2003). 74. Spitz, R., Hero, B., Simon, T. & Berthold, F. Loss in chromosome 11q Iidentifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clinical Cancer Research 12, 3368-3373 (2006). 75. Bell, E. et al. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett. 293, 144-157 (2010). 76. Fernandez, P.C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115-1129 (2003). 77. Grandori, C. & Eisenman, R.N. Myc target genes. Trends Biochem.Sci. 22, 177-181 (1997). 78. Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat.Cell Biol. 8, 764-770 (2006). 79. Knoepfler, P.S. et al. Myc influences global chromatin structure. EMBO J. 25, 2723-2734 (2006). 80. Eilers, M. & Eisenman, R.N. Myc's broad reach. Genes Dev. 22, 2755-2766 (2008). 81. Alam, G. et al. MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. The American Journal of Pathology 175, 856-866 (2009). 82. Knoepfler, P.S., Cheng, P.F. & Eisenman, R.N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699-2712 (2002). 83. Varlakhanova, N.V. et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 80, 9-19 (2010). 84. Hirning, U., Schmid, P., Schulz, W.A., Rettenberger, G. & Hameister, H. A comparative analysis of N-myc and c-myc expression and cellular proliferation in mouse organogenesis. Mech.Dev. 33, 119-125 (1991). 85. Mugrauer, G., Alt, F.W. & Ekblom, P. N-myc proto-oncogene expression during organogenesis in the developing mouse as revealed by in situ hybridization. J.Cell Biol. 107, 1325-1335 (1988). 86. Weiss, W.A., Aldape, K., Mohapatra, G., Feuerstein, B.G. & Bishop, J.M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985-2995 (1997). 87. Moore, H.C. et al. Histological profile of tumours from MYCN transgenic mice. J.Clin.Pathol. 61, 1098-1103 (2008). 88. Cheng, A.J. et al. Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma. Eur.J.Cancer 43, 1467-1475 (2007). 89. Chesler, L. et al. Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia. 10, 1268-1274 (2008). 90. Teitz, T. et al. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 73, 4086-97 (2013). 91. Chen, Z. et al. Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo. Neoplasia. 11, 753-762 (2009). 92. Cotterman, R. & Knoepfler, P.S. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS.One. 4, e5799 (2009). 93. Chen, Y. & Stallings, R.L. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67, 976-83 (2007). 94. De Preter, K. et al. miRNA expression profiling enables risk stratification in archived and fresh neuroblastoma tumor samples. Clin Cancer Res 17, 7684-92 (2011). 95. Welch, C., Chen, Y. & Stallings, R.L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017-22 (2007). 96. Chang, T.C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40, 43-50 (2008). 97. Bray, I. et al. Widespread dysregulation of miRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS ONE 4, e7850 (2009). 98. Lodrini, M. et al. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma. Nucleic Acids Res 41, 6018-33 (2013). 99. Loven, J. et al. MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A 107, 1553-8 (2010). 100. Schulte, J.H. et al. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer 122, 699-704 (2008). 101. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12, 247-56 (2010). 102. Buechner, J. et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 105, 296-303 (2011). 103. Moss, E.G. & Tang, L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev.Biol. 258, 432-442 (2003). 104. Moss, E.G., Lee, R.C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637-646 (1997). 105. Guo, Y. et al. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 384, 51-61 (2006). 106. Yang, D.H. & Moss, E.G. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr.Patterns. 3, 719-726 (2003). 107. Polesskaya, A. et al. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 21, 1125-1138 (2007). 108. West, J.A. et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 460, 909-913 (2009). 109. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906 (2000). 110. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89 (2000). 111. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23-34 (2001). 112. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64, 3753-6 (2004). 113. Kumar, M.S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc.Natl.Acad.Sci.U.S.A 105, 3903-3908 (2008). 114. Lan, F.F. et al. Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int J Cancer 128, 319-31 (2011). 115. Schultz, J., Lorenz, P., Gross, G., Ibrahim, S. & Kunz, M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18, 549-57 (2008). 116. Helland, A. et al. Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers. PLoS One 6, e18064 (2011). 117. Akao, Y., Nakagawa, Y. & Naoe, T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological and Pharmaceutical Bulletin 29, 903-6 (2006). 118. Johnson, S.M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635-647 (2005). 119. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol.Cell 32, 276-284 (2008). 120. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696-708 (2009). 121. Viswanathan, S.R., Daley, G.Q. & Gregory, R.I. Selective blockade of microRNA processing by Lin28. Science 320, 97-100 (2008). 122. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 (2007). 123. Thomson, J.M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202-2207 (2006). 124. Nishino, J., Kim, I., Chada, K. & Morrison, S.J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 135, 227-239 (2008). 125. Melton, C., Judson, R.L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621-626 (2010). 126. Piskounova, E. et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147, 1066-1079 (2011). 127. Qiu, C., Ma, Y., Wang, J., Peng, S. & Huang, Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res. 38, 1240-1248 (2010). 128. Peng, S. et al. Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells 29, 496-504 (2011). 129. Viswanathan, S.R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat.Genet. 41, 843-848 (2009). 130. Chang, T.C. et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America 106, 3384-9 (2009). 131. King, C.E. et al. LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene 30, 4185-4193 (2011). 132. King, C.E. et al. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 71, 4260-4268 (2011). 133. Kim, C.W. et al. Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28. Nucleic Acids Res 40, 3856-69 (2012). 134. Chen, A.X. et al. Germline genetic variants disturbing the Let-7/LIN28 double-negative feedback loop alter breast cancer susceptibility. PLoS Genet 7, e1002259 (2011). 135. Zhou, J., Ng, S.B. & Chng, W.J. LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol 45, 973-8 (2013). 136. Burkhart, C.A. et al. Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma. J.Natl.Cancer Inst. 95, 1394-1403 (2003). 137. Albihn, A., Johnsen, J.I. & Henriksson, M.A. MYC in oncogenesis and as a target for cancer therapies. Adv.Cancer Res. 107, 163-224 (2010). 138. Gustafson, W.C. & Weiss, W.A. Myc proteins as therapeutic targets. Oncogene 29, 1249-1259 (2010). 139. Brodeur, G.M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11, 1466-77 (1993). 140. Shimada, H. et al. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer 86, 349-63 (1999). 141. Tsai, H.Y. et al. Correlation of MYCN amplification with MCM7 protein expression in neuroblastomas: a chromogenic in situ hybridization study in paraffin sections. Hum Pathol 35, 1397-403 (2004). 142. Gallagher, S., Winston, S.E., Fuller, S.A. & Hurrell, J.G. Immunoblotting and immunodetection. Curr Protoc Cell Biol Chapter 6, Unit6 2 (2011). 143. Wang, Y.C. et al. Lin-28B expression promotes transformation and invasion in human hepatocellular carcinoma. Carcinogenesis 31, 1516-22 (2010). 144. Ramezani, A. & Hawley, R.G. Generation of HIV-1-based lentiviral vector particles. Curr Protoc Mol Biol Chapter 16, Unit 16 22 (2002). 145. Huang, C.P. et al. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning. Toxicol Appl Pharmacol 227, 331-8 (2008). 146. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13, 476-84 (2003). 147. Molenaar, J.J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589-93 (2012). 148. Asgharzadeh, S. et al. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 98, 1193-203 (2006). 149. Buechner, J. et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 105, 296-303 (2011). 150. Bianchi-Frias, D., Pritchard, C., Mecham, B.H., Coleman, I.M. & Nelson, P.S. Genetic background influences murine prostate gene expression: implications for cancer phenotypes. Genome Biol 8, R117 (2007). 151. Pollak, D.D., John, J., Schneider, A., Hoeger, H. & Lubec, G. Strain-dependent expression of signaling proteins in the mouse hippocampus. Neuroscience 138, 149-58 (2006). 152. Molenaar, J.J. et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 44, 1199-206 (2012). 153. Kobayashi, K., Era, T., Takebe, A., Jakt, L.M. & Nishikawa, S. ARID3B induces malignant transformation of mouse embryonic fibroblasts and is strongly associated with malignant neuroblastoma. Cancer Res 66, 8331-6 (2006). 154. Peng, R.Q. et al. MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem 287, 14301-9 (2012). 155. Ho, W.L. et al. B3GNT3 expression suppresses cell migration and invasion and predicts favorable outcomes in neuroblastoma. Cancer Sci (2013). 156. Chang, H.H. et al. beta-1,4-Galactosyltransferase III enhances invasive phenotypes via beta1-integrin and predicts poor prognosis in neuroblastoma. Clin Cancer Res 19, 1705-16 (2013). 157. Berois, N. et al. GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin Chem 59, 225-33 (2013). 158. Mallakin, A. et al. Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell 12, 381-94 (2007). 159. Gainor, J.F. et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res 19, 4273-81 (2013). 160. Blass, E.M. & Teicher, M.H. Suckling. Science 210, 15-22 (1980). 161. Zhao, Y. et al. Isolated cleft palate in mice with a targeted mutation of the LIM homeobox gene lhx8. Proc Natl Acad Sci U S A 96, 15002-6 (1999). 162. Risser, J.M. & Slotnick, B.M. Nipple attachment and survival in neonatal olfactory bulbectomized rats. Physiol Behav 40, 545-9 (1987). 163. Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D. & Chun, J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci U S A 97, 13384-9 (2000). 164. Kutsuwada, T. et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16, 333-44 (1996). 165. DeChiara, T.M. et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83, 313-22 (1995). 166. Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415-22 (2004). 167. Sheng, G. et al. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med 12, 526-33 (2006). 168. Edbauer, D. et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373-84 (2010). 169. Wada, T., Kikuchi, J. & Furukawa, Y. Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep 13, 142-9 (2012). 170. Taliaferro, J.M. et al. Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev 27, 378-89 (2013). 171. Danzeiser, D.A., Urso, O. & Kunkel, G.R. Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Mol Cell Biol 13, 4670-8 (1993). 172. Coumoul, X., Shukla, V., Li, C., Wang, R.H. & Deng, C.X. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 33, e102 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58812 | - |
| dc.description.abstract | 微核醣核酸(microRNA)為演化上具高度保留性之非轉譯型小核醣核酸分子,具有以轉錄後抑制方式控制大量標的基因表現之功能,涉及調控與分化、細胞週期控制、生長及細胞凋亡…等重要細胞活動。微核醣核酸在腫瘤細胞中的表現量,時常被發現異於正常細胞,且微核醣核酸在腫瘤中的角色可為抑癌或致癌基因。微核醣核酸-125b(miR-125b)是線蟲中負責調控蟲體發育時序關鍵基因lin-4的同源基因。微核醣核酸-125b在神經系統中高度表現,在誘發神經分化的過程中扮演重要的角色。目前微核醣核酸-125b在線蟲、果蠅及斑馬魚研究模型中已確定其與個體及神經系統發育息息相關,然而是否參與哺乳動物的發育機轉則尚不清楚。
神經母細胞瘤是兒童癌症中最常見的顱外惡性腫瘤。神經母細胞瘤起源於交感神經系統中發育分化異常的神經脊細胞。目前高危險群神經母細胞瘤患者經多方密集治療後,長期存活率仍僅達百分之四十。因此,了解神經母細胞瘤的致病機轉,都有助尋找新的治療標的及改善神經母細胞瘤患者的治療現況。在神經母細胞瘤的諸多致病機轉中,MYCN基因增幅是最為廣泛研究、且與臨床患者不良預後最具有相關性的指標分子之一。但其致病機轉以及如何影響神經母細胞瘤的惡性度,目前卻仍有許多未知之處。過去研究發現MYCN在細胞中,可廣泛性地抑制微核醣核酸的表現,包括微核醣核酸125b。此外,在預後較好的神經母細胞瘤患者中,其微核醣核酸-125b的表現量較高。微核醣核酸-125b的表現量來自兩個基因座─MIR125B1及MIR125B2。其中MIR125B1基因位於人類第十一號染色體長臂(11q24.1),在惡性度極高的神經母細胞瘤患者中,時常出現染色體缺失的區域。顯示微核醣核酸-125b可能在神經母細胞瘤扮演抑癌基因的角色。過去已知LIN28B是微核醣核酸125b的標的分子之一,在許多高惡性度的癌症高度表達,並參與細胞惡性癌變的過程。然而微核醣核酸-125b/LIN28B的調控機轉是否影響神經母細胞瘤的惡性度則仍不清楚。 本篇論文的第一部分,意在探討微核醣核酸-125b/LIN28B調控機轉對於神經母細胞瘤惡性度的影響,及LIN28B的表現量於神經母細胞瘤的臨床預後價值。第二部分我們希望透過基因剔除技術,建立微核醣核酸-125b基因剔除小鼠,以供未來深入研究微核醣核酸-125b對於生理調控功能,或人類疾病的動物模式。 在第一部份的研究中,我們發現微核醣核酸-125b在MYCN基因座增幅的細胞中表現量較低,而其下游分子LIN28B的表現量較高。利用慢病毒(Lentivirus)基因轉導的方式高度表現微核醣核酸-125b後,會抑制神經母細胞瘤的增生,並誘發其分化,且同時能抑制LIN28B的表現。我們分析神經母細胞瘤患者的腫瘤後,發現LIN28B在神經母細胞瘤組織的表達量,不僅可做為預測病患存活程度的獨立指標,且與MYCN基因增幅及MYCN表現量具有正相關性。以核糖核酸干擾技術抑制LIN28B的表現後,可誘發神經母細胞瘤進行分化、減緩細胞增生及抑制MYCN的表現量。當在細胞株中大量表現LIN28B後,可誘發MYCN的表現且增加癌細胞的非貼附性生長能力。顯示微核醣核酸125b/LIN28B/MYCN之訊息迴路對於神經母細胞瘤的惡性度,具有十分重要的角色。因此,未來若能利用針對此訊息路徑設計治療標的,可能有助於替神經母細胞瘤高危險群患者開發具有潛力的治療策略。 第二部份的研究中,我們成功產製Mir125b1及Mir125b2基因剔除小鼠。我們發現Mir125b1基因剔除小鼠出現出生後快速死亡的現象,且伴隨哺乳行為的異常表現,僅有極少數的Mir125b1基因剔除小鼠存活至三週,外觀也出現十分顯著的生長遲緩;而Mir125b2基因剔除小鼠卻沒有出現類似的表現型,我們也發現在控制食慾的神經中樞下視丘裡,70%的微核醣核酸-125b表現量來自Mir125b1基因座,顯示兩個基因座對於微核醣核酸-125b的貢獻度不盡相同。同時,我們也發現Mir125b1基因被剔除後,會誘發宿主基因2610203C20Rik表現量的上升。進一步探討發現2610203C20Rik的表現量提高是由於“in-cis”的影響,即使改以序列突變的方式破壞Mir125b1,仍無法抑止2610203C20Rik表現量上升的現象,顯示Mir125b1所形成的微核醣核酸環型結構,可能對於宿主基因扮演十分重要的調控角色。未來我們將進一步釐清Mir125b1基因剔除鼠的表現型及其可能的分子機轉,以發掘微核醣核酸-125b對於哺乳動物的生理功能。 | zh_TW |
| dc.description.abstract | MicroRNAs (miRNA) are phylogenetically conserved small non-coding RNAs known to post-transcriptionally regulate broad spectra of genes implicated in development, cell differentiation, cell cycle, cell growth and apoptosis. Aberrant expression of miRNA has emerged to be a common feature of cancer and miRNAs frequently serve as either tumor suppressor genes or oncogenes at different cancer types. MicroRNA-125b (miR-125b) is the mammalian ortholog of heterochronic gene from C. elegans, lin-4, which is a miRNA essential for normal temporal control of diverse development processes. MiR-125b is enriched in neural cells, and is up-regulated during all-trans retinoic acid (ATRA)-induced neuron differentiation. The role of miR-125b in development or central nervous system has been reported using several animal models such as C. elegans, D. melanogaster and D. rerio. However, whether miR-125b involved in the development of mammal remains elusive.
Neuroblastoma is the most common extracranial tumor in pediatric malignancies. The tumor arises from the neural crest precursors of the sympathetic nervous system and represents aberrations of normal development programs. Long-term survival is achieved in only 40% of high-risk neuroblastoma despite intensive multimodal therapies. Therefore, identification of novel therapeutic targets and understanding the neuroblastoma pathogenesis are required to improve outcomes of neuroblastoma patients. MYCN amplification (MA) is a well-known oncogenic event in development of neuroblastoma, and is one of the strongest prognostic factors associated with unfavorable outcomes of patients. However, the mechanism of MYCN over-expression and how it promotes an aggressive disease remain largely unknown. MYCN suppresses the expression of a wide range of microRNAs, including miR-125b. Previous study indicated that higher expression of miR-125b was associated with low-risk neuroblastomas. MiR-125b was transcribed from two distinct genomic loci, MIR125B1 and MIR125B2. Interestingly, MIR125B1 gene located at 11q24.1, which was frequently deleted in high-risk neuroblastoma patients. Furthermore, LIN28B, a target of miR-125b, are frequently up-regulated in aggressive types of several cancers and facilitates cellular transfromations. These reports prompted us to hypothesize that miR-125b might serve as the tumor suppressor of neuroblastoma. However, the biological roles of microRNA-125b in neuroblastoma are undetermined. In the first part of this dissertation, we investigated miR-125b/LIN28B regulatory axis in modulating malignant phenotypes of neuroblastoma cells and evaluated the clinical significance of LIN28B in neuroblastoma. In the second part, we intended to establish miR-125b genetic knockout mice for further investigating the roles of miR-125b in physiological regulation or human diseases. At the first aim, we found the expression of miR-125b was lower in MYCN -amplified neuroblastoma cell lines, while the target gene, LIN28B, was relatively higher. Ectopic expression of miR-125b by lentiviral transduction in neuroblastoma cell line inhibited cell proliferation and induced neuronal differentiation accompanying with suppression of LIN28B. We evaluated clinical importance and prognostic value of LIN28B expression in primary neuroblastoma tumors and found that high LIN28B expression predicted a poor clinical outcome independent of other prognostic factors, including MYCN status, in neuroblastoma. Moreover, the expression of LIN28B was positively associated with MYCN amplification and mRNA expression level. Suppression of LIN28B by short hairpin RNAs (shRNAs) in MA neuroblastoma cell lines induced neuronal differentiation, reduced cell proliferation, and reduced MYCN expression. Inversely, ectopic LIN28B expression in MYCN non-amplified (MN) neuroblastoma cells induced MYCN expression and enhanced anchorage-independent growth. These results suggested that miR-125b/LIN28B/MYCN signaling circuit plays important role in modulating tumor malignancy. Thus, targeting the miR-125b/LIN28B/MYCN signaling axis may be a promising potential strategy for the treatment of aggressive neuroblastoma. At the second aim, we established Mir125b1 and Mir125b2 genetic knockout mice, respectively. We found that Mir125b1 knockout mice showed perinatal lethality accompanying with absence of feeding behavior whereas Mir125b2 knockout mice grew normally. Of the few Mir125b1 knockout mice survived for three-weeks, they presented severe growth retardation. In hypothalamus, which is the center of thirsty and hunger, the expression of miR-125b was mostly derived from Mir125b1 locus (70%).It suggested that Mir125b1 and Mir125b2 loci displayed different expression levels in given tissues. Furthermore, we observed an up-regulation of the host gene, 2610203C20Rik, in Mir125b1 knockout mice through “in-cis” regulation. Moreover, disruption of stem-loop structure of Mir125b1 through mutation knockin approach also upregulated 2610203C20Rik. It is suggested that maintenance of intact structure of Mir125b1 might be critical in regulating the expression of the host gene, 2610203C20Rik. In the future, we will further investigate the molecular mechanism of phenotypes of Mir125b1 knockout mice to elucidate the physiological roles of miR-125b in mammals. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:32:25Z (GMT). No. of bitstreams: 1 ntu-102-D96424005-1.pdf: 7836885 bytes, checksum: 10504345ce89c87f133771ee84558063 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 英文摘要 iii 中文摘要 vii 目錄 xi 圖目錄 xiv 表目錄 xvi 附錄目錄 xvii 第一章 緒論 1 第一節 微核醣核酸(microRNA, miRNA)簡介 1 第二節 微核醣核酸在個體及器官組織發育上的角色 2 第三節 微核醣核酸-125b(miR-125b)簡介及文獻回顧 4 微核醣核酸-125b在生理及個體發育的重要功能 4 微核醣核酸-125b在癌症研究中的重要發現 5 第四節 神經母細胞瘤(Neuroblastoma)簡介 6 第五節 MYCN致癌基因的簡介 9 第六節 神經母細胞瘤與微核醣核酸 11 第七節 LIN28A與LIN28B簡介 13 第八節 研究動機 17 第二章 材料方法 19 第一節 實驗材料 19 試藥 19 試劑組 22 重要儀器 23 第二節 神經母細胞瘤患者 24 第三節 LIN28B蛋白免疫組織染色 24 第四節 細胞培養 25 第五節 西方墨點法及抗體 25 細胞蛋白質萃取與定量 25 膠體配製及電泳 26 第六節 慢病毒轉達(Transduction)微核醣核酸-125b及LIN28B-shRNA 28 第七節 RNA產製與定量反轉錄聚合酶連鎖反應 29 第八節 細胞增生及細胞週期分析 30 第九節 以異體移植法觀察腫瘤在活體的生長情形 30 第十節 非貼附性生長能力試驗 31 第十一節 癌細胞侵襲能力試驗 31 第十二節 載體建構與冷光報導試驗 32 第十三節 Mir125b基因剔除小鼠之產製與鑑定 33 小鼠尾巴去氧核醣核酸萃取與基因型定型 35 第十四節 統計分析 36 第三章 結果 37 研究一 探討微核醣核酸-125b/LIN28B對於神經母細胞瘤惡性度之影響 37 第一節 微核醣核酸-125b抑制神經母細胞瘤增生並調控LIN28B表現量 37 第二節LIN28B表現量可作為神經母細胞瘤患者的獨立預後因子 41 第三節 抑制LIN28B降低MYCN基因座增幅神經母細胞瘤增生速度 43 第四節LIN28B影響神經母細胞瘤的惡性度 44 第五節LIN28B影響神經母細胞瘤的分化 45 第六節LIN28B調控神經母細胞瘤的Let-7微核醣核酸表現量 45 研究二 建立微核醣核酸-125b基因剔除鼠並發掘其表現型 47 第七節Mir125b1基因剔除小鼠之產製與鑑定 47 第八節Mir125b1基因剔除小鼠出現新生鼠死亡的表現型 48 第九節Mir125b1基因剔除提高2610203C20Rik基因高度表現 50 第十節Mir125b1序列突變鼠之產製與鑑定 53 第十一節Mir125b1基因突變鼠的表現型 54 第十二節Mir125b2基因剔除鼠之產製與鑑定 55 第十三節Mir125b2基因剔除小鼠未出現出生後死亡的現象 56 第十四節 小鼠下視丘中的微核醣核酸-125b主要來自Mir125b1基因座 57 第四章 討論 59 第五章 未來目標及展望 67 參考文獻 69 圖 85 表 127 附錄 139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因剔除 | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | LIN28B | zh_TW |
| dc.subject | MYCN | zh_TW |
| dc.subject | 微核醣核酸125b | zh_TW |
| dc.subject | LIN28B | en |
| dc.subject | neuroblastoma | en |
| dc.subject | knockout | en |
| dc.subject | miR-125b | en |
| dc.subject | MYCN | en |
| dc.title | I.探討微核醣核酸-125b/LIN28B調控神經母細胞瘤惡性度之角色
II.建立微核醣核酸-125b基因剔除小鼠 | zh_TW |
| dc.title | I.Investigating the role of miRNA-125b/LIN28B in modulating tumor malignancy of neuroblastoma
II.Establishment of miRNA-125b genetic knockout mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林淑華(Shu-Wha Lin),林東燦(Dong-Tsamn, Lin),許文明(Wen-Ming Hsu),黃祥博(Hsiang-Po Huang),楊雅倩(Ya-Chien Yang) | |
| dc.subject.keyword | 神經母細胞瘤,LIN28B,MYCN,微核醣核酸125b,基因剔除, | zh_TW |
| dc.subject.keyword | neuroblastoma,LIN28B,MYCN,miR-125b,knockout, | en |
| dc.relation.page | 166 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-12-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
