Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆(Feipei Lai),邱銘章(Ming-Jang Chiu)
dc.contributor.authorChia-Ping Shenen
dc.contributor.author沈家平zh_TW
dc.date.accessioned2021-06-16T08:31:03Z-
dc.date.available2017-01-27
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-12-24
dc.identifier.citation[1] H. M. d. Boer, M. Mula, and J. W. Sander, “The global burden and stigma of epilepsy,” Epilepsy & Behavior, vol. 12, no. 4, pp. 540-546, Feb. 2008.
[2] A. Strzelczyk, J. Reese, R. Dodel, and H. Hamer, “Cost of Epilepsy: A Systematic Review,” PharmacoEconomics, vol. 26, no. 6, pp. 463-476, June 2008.
[3] World, Health Organization. International Classification of Functioning Disability and Health: ICF. Geneva: WHO; 2001.
[4] http://www.cureresearch.com/e/epilepsy/stats-country.htm
[5] H. Witte, L. D. Iasemidis, and B. Litt, “Special issue on epileptic seizure prediction,” IEEE Trans. Biomedical Engineering, vol. 50, pp. 537–539, 2003.
[6] R. S. Fisher, W. V. E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel Jr.,” Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE),” Epilepsia, vol. 46, no. 4, pp. 470-472, Mar. 2005.
[7] D. E. Cragar, D. T. R. Berry, T. A. Fakhoury, J. E. Cibula, and F. A. Schmitt, “A review of diagnostic techniques in the differential diagnosis of epileptic and nonepileptic seizures,” Neuropsychology Review, vol. 12, no. 1, pp. 31-64, Mar. 2002.
[8] W. Weng and K. Khorasani, “An adaptive structure neural network with application to EEG automatic seizure detection,” Neural Network, vol. 9, pp. 1223-1240, Aug. 1996.
[9] I. Guler and E.D. Ubeyli, “Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients,” Neuroscience methods, vol. 148, no. 2, pp. 113-121, Apr. 2005.
[10] I. Guler and E.D. Ubeyli, “Multiclass support vector machines for EEG signals classification,” IEEE Trans. Information Technology in Biomedicine, vol. 11, no. 2, pp. 117-126, Mar. 2007.
[11] E.D. Ubeyli and I. Guler, “Features extracted by eigenvector methods for detecting variability of EEG signals,” Pattern Recognition Letter, vol. 28, no.5, pp. 592-603, Nov. 2007.
[12] V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Trans. Biomedical Engineering, vol. 11 no. 3, pp. 512-518, May 2007.
[13] S. Ghosh-Dastidar and H. Adeli, “Principle component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection,” IEEE Trans. Biomedical Engineering, vol. 55 no. 2, pp. 512-518, Feb. 2008.
[14] A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, “Epileptic seizure detection in EEGs using time frequency analysis,” IEEE Trans. Information Technology in Biomedicine, vol. 13, no. 5, pp. 703-710, Sep. 2009.
[15] S. Demont-Guignard, P. Benquet, U. Gerber, and F. Wendling, “Analysis of intracerebral EEG recordings of epileptic spikes insights from a neural network model,” IEEE Trans. Biomedical Engineering, vol. 56 , no. 12, pp. 2782-2794, Dec. 2009.
[16] J. H. Holland, “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence,” MIT Press, 1992.
[17] G. S. Sadasivam and D. Selvaraj, “A novel parallel hybrid PSO-GA using MapReduce to schedule jobs in Hadoop data grids,” in Nature and Biologically Inspired Computing (NaBIC), Fukuoka, Dec. 2010, pp. 377-382.
[18] C. P. Shen, W. C. Kao, Y.Y. Yang, M. C. Hsu, Y. T. Wu, and F. Lai, “Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines,” Expert Systems With Applications, vol. 39, no. 9, pp. 556-561, July 2012.
[19] Y. Lee, “Handwritten digit recognition using k-nearest neighbor, radial basis function, and back-propagation neural network,” IEEE Trans. Neural Computing, vol. 3, no. 3, pp. 521-537, Oct. 1999.
[20] W. A. Chaovalitwongse, Y. J. Fan, and R. C. Sachedo, “On the time series k-nearest neighbor classification of abnormal brain activitity,” IEEE Trans. System, Man, and Cybernetics, vol. 37, no. 6, pp. 1005-1016, Nov. 2007.
[21] H. Adeli and A. Karim,“A Fuzzy-wavelet RBFNN model for freeway incident detection,” Journal of Transportation Engineering, vol. 126, no. 6, pp. 464-471, 2000.
[22] A. Karim and H. Adeli, “Radial basis function neural network for work zone capacity and queue estimation,” Journal of Transportation Engineering, vol. 129, no. 5, pp. 494-503, 2003.
[23] Cortes, C. and V. Vapnik, Support-vector network, 1995.
[24] C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines, 2001. Software is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[25] http://hadoop.apache.org/
[26] Y. S. Xia and H. Leung, “Nonlinear spatial-temporal prediction based on optimal fusion,” IEEE Trans. Neural Network, vol. 17, no. 4, pp. 975–988, Jul. 2006.
[27] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Information Theory, vol. 36, no. 5, pp. 961-1005, 1990.
[28] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet presentation,” IEEE Trans. Intelligence, vol. 11 no. 7, pp. 674-693, 1989.
[29] A. Cohen, I. Daubechies, and J. Feauveau, “Bi-othogonal bases of compactly supported wavelets,” IEEE Trans. Communication on Pure Applied mathematics, vol. 45, pp. 485-560, 1992.
[30] http://en.wikipedia.org/wiki/Total_variation
[31] S. M. Pincus, “Approximate entropy as a measure of system complexity,”in Proc. National Academic Sciences, USA, vol. 88, 1991, pp. 2297-2301.
[32] L. Chen, W. Luo, Y. D. Zhen, and S. Zeng, “Characterizing the complexity of spontaneous electrical signals in cultures neuronal networks using approximate entropy,” IEEE Trans. Information Technology in Biomedicine, vol. 13, no. 3, pp. 405-410, May 2009.
[33] http://en.wikipedia.org/wiki/Skewness
[34] C. A. Frantzidis, C. Bratsas, M. A. Klados, E. Konstantinidis, C. D. Lithari, A. B. Vivas, C. L. Papadelis, E. Kaldoudi, C. Pappas, and P. D. Bamidis, “On the Classification of Emotional Bio-signals Evoked While Viewing Affective Pictures An Integrated Data-Mining-Based Approach for Healthcare Applications,” IEEE Trans. Information Technology In Biomedicine, vol. 14, no. 2, pp. 309-318, Mar. 2010.
[35] D. Hayn, B. Jammerbund, A. Kollmann, and G. Schreier, “A bio-signal analysis system applied for developing an algorithm predicting critical situations of high risk cardiac patients by hemodynamic monitoring,” Computer in Cardiology, vol. 36, pp. 629-632, 2009.
[36] http://en.wikipedia.org/wiki/Bio-signal
[37] E. L. d. S. Niedermeyer and E. Niedemeyer, “Electroencephalography: Basic Principles, Clinical Applications, and Related Fields,” Lippincot Williams & Wilkins, 2004.
[38] S. Osowski, L. T. Haoi, and Markiewicz, “Support vector machine-based expert system for reliable heartbeat recognition,” IEEE Trans. Biomedical Engineering, vol.51, no.4, pp.582-589, Apr. 2004.
[39] C. S. Roy, and C. S. Sherrington, “On the Regulation of the Blood-supply of the Brain,” J Physiol., vol. 11, no.1, pp. 85-158, Jan. 1890.
[40] P. A. Bandettini, A. Jesmanowicz, E. C.Wong, and J. S. Hyde, “Processing strategies for time-course data sets in functional MRI of the human brain,” Magnetic Resonance in Medicine, vol. 30, no. 2, pp. 161-173, 1993.
[41] http://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm
[42] http://en.wikipedia.org/wiki/Electroencephalography
[43] H. H. Jasper, “The ten-twenty electrode system of the International Federation,” Electroenceph. clin. Neurophysiol., vol. 10, pp. 371-375, 1958.
[44] P. L. Nunez and K. L. Pilgreen, “The Spline-Laplacian in Clinical Neurophysiology,” Journal of Clinical Neurophysiology, vol. 8, no. 4, pp. 397-413, 1991.
[45] P. S. Hamilton and W. J. Tompkins, “Quantitative Investigation of QRS Detection Rules Using the MIT / BIH Arrhythmia Database,” IEEE Trans. Biomedical Engineering, vol. 33, no. 12, pp. 1157-1165, 1986.
[46] http://www.thelancetstudent.com/wp-content/uploads/2008/03/witham.pdf
[47] D. Cosandier-Rimele, J. M. Badier, and F. Wendling, “A realistic spatiotemporal source model for EEG activity: Application to the reconstruction of epileptic depth-EEG signals,”in Proc. IEEE Engineering in Medicine and Biology Society, New York, USA, Aug. 30, 2006, pp. 4253-4256.
[48] H. J. Yu, C. P. Shen, S. Dorjgochoo, C. H. Chen, J. M. Wu, M. S. Lai, C. T. Tan, C. J., E. Altangerel, H. C. Lee, C. W. Hsueh, Y. Chung, and F. Lai, “A physician order category-based clinical guideline comparison system,” Journal of Medical Systems, vol. 36, no. 6, pp. 3741-3753, Dec. 2012.
[49] S. H., Hsieh, P. H., Cheng, C. H., Chen, K. H., Huang, and P. H., Chen, “A newborn screening system based on service-oriented architecture embedded support vector machine,” J Med Syst, vol. 34, no. 4, pp. 727-733, Aug. 2010.
[50] C. P. Shen, C. Jigjidsuren, S. Dorjgochoo, C. H. Chen, W. H. Chen, C. K. Hsu, J. M. Wu, C. W. Hsueh, M. S. Lai, C. T. Tan, E. Altangerel, and F. Lai, “A Data-mining Framework for Transnational Healthcare System,” Journal of Medical Systems, vol. 36, no. 4, pp. 2765-2775, Aug. 2012.
[51] EEG time series download page. (2005, Nov.). [Online]. EEG data is available at http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html
[52] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state,” Physical Review. E, vol. 64, Article ID 061907, 2001.
[53] T. A. Pedley, “Interictal epileptiform discharges: discriminating characteristics and clinical correlations,” America Journal of EEG Technology, vol.20, pp. 101-119, 1980.
[54] http://epaper.ntuh.gov.tw/health/201111/special_2_1.html
[55] http://wegenius.org/node/282
[56] H. Jing and M. Takigawa, “Topographic analysis of dimension estimates of EEG and filtered rhythms in epileptic patients with complex partial seizures,” Biol. Cybern, vol. 83 pp. 391-397, 2000.
[57] C. P. Shen, C. C. Chen, S. L. Hsieh, W. H. Chen, J. M. Chen, C. M. Chen, F. Lai, and M. J. Chiu, “High-Performance Seizure Detection System Using a Wavelet-Approximate Entropy-fSVM Cascade with Clinical Validation,” Clinical EEG and Neuroscience, vol. 44, no. 4, pp. 247-256, Oct. 2013.
[58] C. P. Shen, S. T. Liu, W. Z. Zhou, F. S. Lin, A. Y. Y. Lam, H. Y. Sung, W. Chen, J. W. Lin, M. J. Chiu, M. K. Pan, J. H. Kao, J. M. Wu, and F. Lai, “A Physiology-Based Seizure Detection System for Multichannel EEG,” PLOS ONE, vol. 8, no. 6, DOI: 10.1371, June, 2013.
[59] C. P. Shen, W. Zhou, F. S. Lin, H. Y. Sung, Y. Y. A. Lam, W. Chen, J. W. Lin, M. K. Pan, M. J. Chiu, and F. Lai,“Epilepsy Analytic System with Cloud Computing,” in Proc. IEEE Engineering in Medicine and Biology Society (EMBC 2013), Osaka, July, 2013, pp. 1644-1647.
[60] http://www.mathworks.com/help/matlab/
[61] Z. Ji, T. Sugi, S. Goto, X. Wang, and A. Ikeda,“An Automatic Spike Detection System Based on Elimination of False Positives Using the Large-Area Context in the Scalp EEG,” IEEE Trans. Biomed. Eng., vol. 58, 2478-2488, 2011.
[62] M. Valderrama, C. Alvarado, S. Nikolopoulos, J. Martinerie, and C. Adam,“Identifying an increased risk of epileptic seizures using a multi-feature EEG–ECG classification,” Biomedical Signal Processing and Control, vol. 7, pp. 237-244, 2011.
[63] C. P. Shen, C. H. Liu, F. S. Lin, H. Lin, C. Y. F. Huang, C. Y. Kao, F. Lai, and J. W. Lin, “A Multiclass Classification Tool Using Cloud Computing Architecture,” International Symposium on Network Enabled Health Informatics, Biomedicine and Bioinformatics, Istanbul, Turkey, June 2012, pp. 797-802.
[64] M. Nandan, S. S. Talathi, S. Myers, W. L. Ditto, P. P. Khargonekar, and P. R. Carney, “Support vector machines for seizure detection in an animal model of chronic epilepsy,” Journal of Neural Engineering, vol. 7, Article ID: 036001, June, 2010.
[65] A. Aarabi, R. Grebe, and F.Wallois, “A multistage knowledge-based system for EEG seizure detection in newborn infants,” Clinical Neuropsychology, vol. 118, pp. 2781-2797, 2007.
[66] S. Faul, G. Greorcic, G. Boylan, W. Marnane, G. Lightbody, and S. Connolly, “Gaussian process modeling of EEG for the detection of neonatal seizures,” IEEE Trans. Biomedical Engineering, vol. 54, pp. 2151-2162, 2007.
[67] N. Acir, I. Oztura, M. Kuntalp, B. Baklan, and C. Guzelis, “Automatic detection of epileptiforrm events in EEG by a three stage based on artificial neural networks,” IEEE Trans. Biomedical Engineering, vol. 52, pp. 30-40, 2007.
[68] L. Logesparan and E. Rodriguez, “A Novel Phase Congruency Based Algorithm for Online Data Reduction in Ambulatory EEG Systems,” IEEE Trans. Biomed. Eng., vol. 58, pp. 2825-2834, 2011.
[69] R. P. Lesser, H. Luders, D. S. Dinner, and H. Morris, “An introduction to the basic concepts of polarity and localization,” J Clin Neurophysiol, vol. 2, pp. 45-61, 1985.
[70] P. Olejniczak, “Neurophysiologic basis of EEG,” J Clin Neurophysiol, vol. 23, pp. 186-189, 2006.
[71] J. Knott, “Further thoughts on polarity, montages, and localization,” J Clin Neurophysiol, vol. 2, pp. 63-75, 1985.
[72] W. T. Blume, G. M. Holloway, and S. Wiebe, “Temporal epileptogenesis: localizing value of scalp and subdural interictal and ictal EEG data,” Epilepsia vol. 42, pp. 508-514, 2001.
[73] M. Lucia, J. Fritschy, P. Dayan, and D. Holder, “A novel method for automated classification of epileptiform activity in the human electroencephalogram-based on independent component analysis,” Med. Biol. Eng. Comput., vol. 46, pp. 263-272, 2008.
[74] W. Chaovalitwongse, R. Pottenger, S. Wang, Y. Fan, and L. Iasemidis, “Pattern- and Network-Based Classification Techniques for Multichannel Medical Data Signals to Improve Brain Diagnosis,” IEEE Trans. Sys. Man Cyber., vol. 41, pp. 977-988, 2011.
[75] R. Yadav, M. Swamy, and R. Agarwal, “Model-Based Seizure Detection for Intracranial EEG Recordings,” IEEE Trans. Biomed. Eng., vol. 59, pp. 1419-1428, 2012.
[76] J. C. Sackellares, D. S. Shiau, J. J. Halford, S. M. LaRoche, and K. M. Kelly, “Quantitative EEG analysis for automated detection of nonconvulsive seizures in intensive care units,” Epilepsy Behav., vol 22, pp. 69-73, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58788-
dc.description.abstract癲癇是一種常見的慢性神經疾病,並且會有不定時的發作情形。由於腦波圖 (Electroencephalogram)訊號在癲癇的診斷上扮演重要的角色。因此,雖然多頻道的腦波圖比單頻道的腦波圖有著更多的資訊以及空間解析度,但是傳統的腦波訊號分析卻缺乏多頻道的演算法。基於腦波多頻道的大量資料運算,因此我們在本篇論文提出了一個雲端架構的多頻道腦波之癲癇分析系統 (EAS)。在訊號分析上,我們同時考慮單極點訊號 (Unipolar)和雙極點訊號 (Bipolar)以抽取特徵,其中包含近似熵 (Approximate Entropy)以及訊號統計數值。同時,我們也採用基因演算法 (Genetic Algorithm)做特徵排序,最後再利用支持向量機 (Support Vector Machines)以及後棘波 (Spike)比對濾波器來辨識腦波訊號。實驗結果顯示,臨床資料II的棘波 (Spike)辨識率是86.69%,而發作 (Seizure)的辨識率是99.77%。同時利用臨床資料II所訓練的模型來偵測臨床資料III也可以得到91.18%的棘波 (Spike) 辨識率以及99.22%的發作 (Seizure) 辨識率。因此,我們建立了一個可靠地、及時地以及完整地 (包含醫療資訊以及訊號處理技術)棘波和發作的多頻道腦波偵測系統。zh_TW
dc.description.abstractEpilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The Electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multi-channel EEG signals. Due to large data computation, we propose a cloud based Epilepsy Analysis System (EAS) on multi-channel EEG signals. Both unipolar and bipolar EEG and ECG signals are both considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features cascaded Genetic Algorithm (GA). Furthermore, EEG was also tested the performance by Support Vector Machine (SVM) and post-spike matching filters. We obtained accuracies of spikes and seizures are 86.69% and 99.77% for Clinical Data Set II. The detection system was further validated using the model trained by Clinical Data Set II on Clinical Data Set III. The system again showed high performance, with accuracies of spikes and seizures are 91.18% and 99.22%. Therefore, we built up a reliable, real-time, and complete (medical information and signal processing technology) system for detecting a large variety of seizures and spikes from multi-channel EEG data.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:31:03Z (GMT). No. of bitstreams: 1
ntu-102-D96945013-1.pdf: 5821808 bytes, checksum: 1f76deb6a2e24cd6434aa62a186b3966 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
LIST OF APPENDIXES xi
Chapter 1 Introduction 1
Chapter 2 Background 6
2.1 Biosignal 6
2.1.1 Electroencephalogram (EEG): 6
2.1.2 Electrocardiogram (ECG) 9
2.1.3 Functional Magnetic Resonance Imaging (fMRI) 11
2.2 System Architecture 12
2.2.1 Web Services Approach 12
2.2.2 Hadoop 13
.2.2.2.1 Hadoop distributed file system 13
.2.2.2.2 MapReduce 15
Chapter 3 Methods 17
3.1 Data Acquisition and Preprocessing 17
3.2 Feature Extraction 21
3.2.1 Wavelet Transform 21
3.2.2 Basic Statistics Features 23
3.2.3 Statistical Features of Unipolar EEG and Bipolar EEG 25
3.3 Feature Selection 28
3.3.1 Fisher Score 28
3.3.2 Genetic Algorithm (GA) 30
.3.3.2.1 Chromosome 31
.3.3.2.2 Fitness 31
.3.3.2.3 Operator 31
3.4 Classification 34
3.4.1 Support Vector Machine 34
3.4.2 K-nearest neighbors 36
3.4.3 Artificial Neural Network 37
3.5 Performance Evaluation 39
Chapter 4 Experimental Results 40
4.1 Single Channel EEG Data 40
4.2 Multi-Channel EEG Data 43
4.3 Post-Classification Spike Matching 46
4.4 System implementation 49
4.4.1 Two Layer Cloud Computing 50
4.4.2 Interface Page EEG of Monitor 53
4.4.3 System Performance 54
Chapter 5 Discussion 56
5.1 Single Channel EEG Data 56
5.2 Multi-Channel EEG Data 60
5.3 System Optimization 64
5.3.1 One Layer MapReduce and Two Layer MapReduce 64
5.3.2 Feature Reduction Method 65
Chapter 6 Conclusion 67
REFERENCE 68
APPENDIXES 74
dc.language.isoen
dc.subject腦波zh_TW
dc.subject雲端運算zh_TW
dc.subject支持向量機zh_TW
dc.subject基因演算法zh_TW
dc.subjectElectroencephalogramen
dc.subjectGenetic Algorithmen
dc.subjectSupport Vector Machineen
dc.subjectCloud Computingen
dc.title植基於雲端運算之多通道腦波癲癇預測系統zh_TW
dc.titleCloud-based Epileptic Seizure Detection System Using a Multi-Channel EEG Classificationen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳中平,高成炎,高文忠,林正偉,周迺寬
dc.subject.keyword腦波,基因演算法,支持向量機,雲端運算,zh_TW
dc.subject.keywordElectroencephalogram,Genetic Algorithm,Support Vector Machine,Cloud Computing,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2013-12-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved