請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58772完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
| dc.contributor.author | Chih-Yu Chiang | en |
| dc.contributor.author | 姜智瑜 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:30:12Z | - |
| dc.date.available | 2021-06-01 | |
| dc.date.copyright | 2020-07-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-14 | |
| dc.identifier.citation | 1. Wadajkar, A.S., et al., Deep vein thrombosis: current status and nanotechnology advances. Biotechnol Adv, 2013. 31(5): p. 504-513. 2. Schreijer, A.J.M., P.H. Reitsma, and S.C. Cannegieter, High hematocrit as a risk factor for venous thrombosis. Cause or innocent bystander? Haematologica-the Hematology Journal, 2010. 95(2): p. 182-184. 3. Ruggeri, Z.M., Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost, 2003. 1(7): p. 1335-42. 4. Galson, S.K., Prevention of deep vein thrombosis and pulmonary embolism. Public Health Rep, 2008. 123(4): p. 420-1. 5. Lyaker, M.R., et al., Arterial embolism. Int J Crit Illn Inj Sci, 2013. 3(1): p. 77-87. 6. Beldi, G., et al., Prevention of perioperative thromboembolism in patients with atrial fibrillation. Br J Surg, 2007. 94(11): p. 1351-5. 7. Xiang, Z., et al., Inhibition of Inflammation-Associated Thrombosis with ROS-Responsive Heparin-DOCA/PVAX Nanoparticles. Macromol Biosci, 2019. 19(8): p. e1900112. 8. Perkins, L.A., C.J. Anderson, and E.M. Novelli, Targeting P-Selectin Adhesion Molecule in Molecular Imaging: P-Selectin Expression as a Valuable Imaging Biomarker of Inflammation in Cardiovascular Disease. J Nucl Med, 2019. 60(12): p. 1691-1697. 9. Jang, E.H., et al., Hypoxia-responsive folic acid conjugated glycol chitosan nanoparticle for enhanced tumor targeting treatment. Int J Pharm, 2020. 580: p. 119237. 10. Quinones, J.P., H. Peniche, and C. Peniche, Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers (Basel), 2018. 10(3). 11. Riemann, A., et al., Acidic environment activates inflammatory programs in fibroblasts via a cAMP-MAPK pathway. Biochim Biophys Acta, 2015. 1853(2): p. 299-307. 12. Maguire, F.W., Heparin: an overview. Del Med J, 1979. 51(8): p. 439-49. 13. Bussey, H., J.L. Francis, and G. Heparin Consensus, Heparin overview and issues. Pharmacotherapy, 2004. 24(8 Pt 2): p. 103S-107S. 14. Lever, R. and C.P. Page, Non-anticoagulant effects of heparin: an overview. Handb Exp Pharmacol, 2012(207): p. 281-305. 15. Babazada, H., et al., Self-assembling lipid modified glycol-split heparin nanoparticles suppress lipopolysaccharide-induced inflammation through TLR4-NF-kappaB signaling. J Control Release, 2014. 194: p. 332-40. 16. Ludwig, R.J., et al., Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res, 2004. 64(8): p. 2743-50. 17. Gao, Y., et al., P-Selectin-mediated acute inflammation can be blocked by chemically modified heparin, RO-heparin. Mol Cells, 2005. 19(3): p. 350-5. 18. Xiong, G.M., Y.Z. Yap, and C. Choong, Single-step synthesis of heparin-doped polypyrrole nanoparticles for delivery of angiogenic factor. Nanomedicine (Lond), 2016. 11(7): p. 749-65. 19. Manivasagan, P., et al., Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Scientific Reports, 2017. 7: p. 1-14. 20. Khan, F., et al., Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog, 2019. 128: p. 363-373. 21. Cheng, D., H. Xia, and H.S. Chan, Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres. Langmuir, 2004. 20(23): p. 9909-12. 22. Zare, E.N., T. Abdollahi, and A. Motahari, Effect of functionalization of iron oxide nanoparticles on the physical properties of poly (aniline-co-pyrrole) based nanocomposites: Experimental and theoretical studies. Arabian Journal of Chemistry, 2020. 13(1): p. 2331-2339. 23. Bajaj, G., W.G. Van Alstine, and Y. Yeo, Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS One, 2012. 7(1): p. e30899. 24. Better Nanoparticle Targeting with P-Selectin. Cancer Discov, 2016. 6(9): p. 936. 25. John, A.E., et al., Discovery of a potent nanoparticle P-selectin antagonist with anti-inflammatory effects in allergic airway disease. FASEB J, 2003. 17(15): p. 2296-8. 26. Jin, A.Y., et al., Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging, 2009. 4(6): p. 305-11. 27. Sidaway, P., Targeted therapies: P-selectin guides nanoparticle delivery to tumours. Nat Rev Clin Oncol, 2016. 13(9): p. 528. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58772 | - |
| dc.description.abstract | 血栓奈米科技結合光熱療法與pH敏感之靶向性用於治療動脈栓塞近年來備受重視,其具有微創性、可防止非目標區域之損壞並能夠快速復原等優點。我們的研究提供了一具多功能且生物相容性之乙二醇殼聚醣(glycol chitosan)、聚吡咯(polypyrrole)與肝素(heparin)之奈米粒子,由於其好的生物相容性、高穩定性和強近紅外光吸收而成為血栓光熱消融的新型藥物。在本研究中,六水合氯化鐵(FeCl36H2O)在酸性條件下催化吡咯(pyrrole)氧化聚合成聚吡咯(Ppy),接著陽離子乙二醇殼聚醣(GCS)和陰離子肝素(Hep)自組裝成具pH靈敏的抗發炎奈米顆粒。本策略利用了乙二醇殼聚醣的pH敏感性,讓奈米粒子在發炎反應所引起的酸性環境中透過pH值之改變來成功標靶到發炎部位以改善靶向性。而為了更進一步改善靶向性,我們運用了肝素能夠靶向P-選擇素(P-selectin)的能力,P-選擇素是在發炎反應中作為碳水化合物結合細胞粘附的主要分子。此外,近紅外光加熱實驗顯現了奈米粒子優秀的加熱能力,可用於血栓的光熱治療。在體外模擬方面我們是透過脂多醣(lipopolysaccharide)來對牛主動脈內皮細胞引起發炎反應,奈米顆粒在MTT試驗下顯現良好的細胞存活率,抗人類CD62P抗體(PE)的熒光測定則觀察到奈米顆粒靶能夠有效的標靶到發炎的細胞。動物體內實驗結果顯示奈米粒子能夠有效的標靶至血栓並成功地累積,透過光熱後能成功加熱到44.6度,足夠成功的消融血栓。本研究展示了一極具潛力性的奈米顆粒結合了pH敏感並能標靶至P-選擇素且結合光熱效應以消融血栓。 | zh_TW |
| dc.description.abstract | Thrombus nanotechnology is emerging as one of the promising strategies for the treatment of arterial embolism by combining inflammation site targeting and photothermal therapy (PTT). This approach has received considerable attention in the recent years because it is minimally invasive, prevents damage to non-targeted regions and permits fast recovery. The present study demonstrates multifunctional glycol chitosan-polypyrrole-heparin nanoparticles (GCPH NPs) as novel agents for photothermal ablation of thrombus attributed to the biocompatibility, stability, pH-responsiveness, P-selectin targeting and strong near-infrared (NIR) absorbance of the nanoparticles. In this study, iron chloride hexahydrate (FeCl36H2O ) was used to initiate oxidative polymerization of pyrrole to polypyrrole (PPY) in acidic conditions, followed by binding with cationic glycol chitosan (GCS) and anionic heparin (Hep) to self-assemble pH-responsive, anti-inflammatory nanoparticles. The strategy took advantage of glycol chitosan’s pH sensitivity, enhancing the targeting ability of the nanoparticles in acidic microenvironment resulted from inflammation. To further improve targeting, heparin ability to target P-selectin, a carbohydrate-binding cell adhesion molecule that plays a major role in the initiation of inflammatory responses, was utilized. The cytotoxicity of the synthesized nanoparticles was tested using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) assay on bovine aortic endothelial cells (BAEC) cell line. The cells were shown to be viable in the presence of the nanoparticles. Cell experiments also revealed the effective targeting ability of the nanoparticles to inflammation sites using anti-human CD62P antibody (PE) fluorescence assay, in tandem with Cyanine5 (Cy5) fluorescence assay, on lipopolysaccharide (LPS)-induced BAEC. The in vivo results further demonstrated successful targeting and accumulation of nanoparticles in thrombosis site compared to corresponding control groups. The accumulation of the nanoparticles was accompanied with NIR absorbance up to 44.6 C, exceeding the temperature required for photothermal ablation of thrombosis. This research highlighted the promising potential use of GCPH NPs for pH-responsive and P-selectin targeting combined with photothermal ablation of thrombosis in preclinical animals. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:30:12Z (GMT). No. of bitstreams: 1 U0001-0907202020333000.pdf: 7201395 bytes, checksum: 9730c92ec69814aa758596159098f644 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgement iii 摘要 v Abstract vii Content ix List of Figures xiii Chapter 1 Introduction 1 1.1 Arterial embolism 1 1.1.1 Thrombosis 1 1.1.2 Inflammation 2 1.2 Nanoparticles 3 1.2.1 Nanotechnology Drug Delivery Systems 3 1.2.2 Glycol Chitosan 4 1.2.3 Heparin 5 1.2.4 Polypyrrole 6 1.2.5 Iron(III) Chloride Hexahydrate 6 1.3 Motivation and Aims 7 Chapter 2 Materials and Methods 9 2.1 Materials 9 2.1.1 Synthesis of GCP and GCP50H Nanoparticles 9 2.1.2 BAEC Culturing 9 2.2 Equipment 10 2.3 Solution Formula 11 2.4 Methods 13 2.4.1 Synthesis of GCP and GCP50H Nanoparticles 13 2.4.2 Characterization of GCP and GCP50H Nanoparticles 14 2.4.3 Thermal Effect of GCP50H Nanoparticles 14 2.4.4 BAEC Culture 15 2.4.5 Lipopolysaccharide-Induced Reactive Oxygen Species 15 2.4.6 P-Selectin Anti-Human CD62P Antibody Dye 16 2.4.7 Cy5 Dye 16 2.4.8 in vitro Cytotoxicity Assay 16 2.4.9 Animal Studies 17 2.4.10 Statistical Analysis 17 Chapter 3 Results and Discussions 19 3.1 Optimization of GCP and GCP50H Nanoparticles 19 3.2 Synthesis of GCP and GCP50H Nanoparticles 21 3.3 Characterization of GCP and GCP50H Nanoparticles 21 3.3.1 Dynamic Light Scattering 21 3.3.2 Fourier Transform Infrared Spectroscopy 23 3.3.3 Vacuum Freeze Dry 23 3.3.4 Scanning Electron Microscopy 24 3.3.5 Transmission Electron Microscopy 24 3.3.6 Near Infrared Laser Thermal Heating 24 3.4 BAEC Experiments 25 3.5 Animal Studies 26 Conclusion 59 Future Perspective 61 References 63 | |
| dc.language.iso | en | |
| dc.subject | 光熱效應 | zh_TW |
| dc.subject | P-選擇素 | zh_TW |
| dc.subject | pH靈敏 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 血酸 | zh_TW |
| dc.subject | inflammation | en |
| dc.subject | thrombosis | en |
| dc.subject | photothermal | en |
| dc.subject | P-selectin | en |
| dc.subject | pH-responsive | en |
| dc.subject | nanoparticles | en |
| dc.title | 合成具pH調控性的聚吡咯基奈米粒子應用於治療內皮細胞發炎 | zh_TW |
| dc.title | Development of pH-Responsive Polypyrrole-Based Nanoparticles for Inflammatory Endothelial Cells Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 莊爾元(Er-Yuan Chuang),范育睿(Yu-Jui Fan) | |
| dc.subject.keyword | 血酸,發炎,奈米粒子,pH靈敏,P-選擇素,光熱效應, | zh_TW |
| dc.subject.keyword | thrombosis,inflammation,nanoparticles,pH-responsive,P-selectin,photothermal, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202001423 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0907202020333000.pdf 未授權公開取用 | 7.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
