請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃銓珍 | |
| dc.contributor.author | Hao-Wei Han | en |
| dc.contributor.author | 韓皓偉 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:29:49Z | - |
| dc.date.available | 2014-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-01-02 | |
| dc.identifier.citation | 1. Popper AN (2000) Hair cell heterogeneity and ultrasonic hearing: recent advances in understanding fish hearing. Philos Trans R Soc Lond B Biol Sci 355: 1277-1280.
2. Ghysen A, Dambly-Chaudiere C (2004) Development of the zebrafish lateral line. Curr Opin Neurobiol 14: 67-73. 3. Dambly-Chaudiere C, Sapede D, Soubiran F, Decorde K, Gompel N, et al. (2003) The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates. Biol Cell 95: 579-587. 4. Namdaran P, Reinhart KE, Owens KN, Raible DW, Rubel EW (2012) Identification of modulators of hair cell regeneration in the zebrafish lateral line. J Neurosci 32: 3516-3528. 5. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10: 445-457. 6. Dambly-Chaudiere C, Cubedo N, Ghysen A (2007) Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7: 23. 7. David NB, Sapede D, Saint-Etienne L, Thisse C, Thisse B, et al. (2002) Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci U S A 99: 16297-16302. 8. Valentin G, Haas P, Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 17: 1026-1031. 9. Haas P, Gilmour D (2006) Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 10: 673-680. 10. Li Q, Shirabe K, Kuwada JY (2004) Chemokine signaling regulates sensory cell migration in zebrafish. Dev Biol 269: 123-136. 11. Lecaudey V, Cakan-Akdogan G, Norton WH, Gilmour D (2008) Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 135: 2695-2705. 12. Chitnis AB, Nogare DD, Matsuda M (2012) Building the posterior lateral line system in zebrafish. Dev Neurobiol 72: 234-255. 13. Laguerre L, Soubiran F, Ghysen A, Konig N, Dambly-Chaudiere C (2005) Cell proliferation in the developing lateral line system of zebrafish embryos. Dev Dyn 233: 466-472. 14. Ma EY, Raible DW (2009) Signaling pathways regulating zebrafish lateral line development. Curr Biol 19: R381-386. 15. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15: 749-761. 16. McGraw HF, Drerup CM, Culbertson MD, Linbo T, Raible DW, et al. (2011) Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development 138: 3921-3930. 17. Valdivia LE, Young RM, Hawkins TA, Stickney HL, Cavodeassi F, et al. (2011) Lef1-dependent Wnt/beta-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development 138: 3931-3941. 18. Nechiporuk A, Raible DW (2008) FGF-dependent mechanosensory organ patterning in zebrafish. Science 320: 1774-1777. 19. Matsuda M, Chitnis AB (2010) Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish. Development 137: 3477-3487. 20. Tsang M, Friesel R, Kudoh T, Dawid IB (2002) Identification of Sef, a novel modulator of FGF signalling. Nat Cell Biol 4: 165-169. 21. Kozlowski DJ, Whitfield TT, Hukriede NA, Lam WK, Weinberg ES (2005) The zebrafish dog-eared mutation disrupts eya1, a gene required for cell survival and differentiation in the inner ear and lateral line. Dev Biol 277: 27-41. 22. Shen YC, Jeyabalan AK, Wu KL, Hunker KL, Kohrman DC, et al. (2008) The transmembrane inner ear (tmie) gene contributes to vestibular and lateral line development and function in the zebrafish (Danio rerio). Dev Dyn 237: 941-952. 23. Chen X, Lou Q, He J, Yin Z (2011) Role of zebrafish lbx2 in embryonic lateral line development. PLoS One 6: e29515. 24. Nixon SJ, Carter A, Wegner J, Ferguson C, Floetenmeyer M, et al. (2007) Caveolin-1 is required for lateral line neuromast and notochord development. J Cell Sci 120: 2151-2161. 25. Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14: 118-124. 26. Mi S, Lee X, Shao Z, Thill G, Ji B, et al. (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7: 221-228. 27. Park JB, Yiu G, Kaneko S, Wang J, Chang J, et al. (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45: 345-351. 28. Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, et al. (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45: 353-359. 29. Yiu G, He Z (2003) Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr Opin Neurobiol 13: 545-551. 30. Petrinovic MM, Duncan CS, Bourikas D, Weinman O, Montani L, et al. (2010) Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development 137: 2539-2550. 31. Walchli T, Pernet V, Weinmann O, Shiu JY, Guzik-Kornacka A, et al. (2013) Nogo-A is a negative regulator of CNS angiogenesis. Proc Natl Acad Sci U S A 110: E1943-1952. 32. Bonal CB, Baronnier DE, Pot C, Benkhoucha M, Schwab ME, et al. (2013) Nogo-A downregulation improves insulin secretion in mice. Diabetes 62: 1443-1452. 33. Kuang E, Wan Q, Li X, Xu H, Zou T, et al. (2006) ER stress triggers apoptosis induced by Nogo-B/ASY overexpression. Exp Cell Res 312: 1983-1988. 34. Kim JE, Bonilla IE, Qiu D, Strittmatter SM (2003) Nogo-C is sufficient to delay nerve regeneration. Mol Cell Neurosci 23: 451-459. 35. Acevedo L, Yu J, Erdjument-Bromage H, Miao RQ, Kim JE, et al. (2004) A new role for Nogo as a regulator of vascular remodeling. Nat Med 10: 382-388. 36. Xiao W, Zhou S, Xu H, Li H, He G, et al. (2013) Nogo-B promotes the epithelial-mesenchymal transition in HeLa cervical cancer cells via Fibulin-5. Oncol Rep 29: 109-116. 37. Miao RQ, Gao Y, Harrison KD, Prendergast J, Acevedo LM, et al. (2006) Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc Natl Acad Sci U S A 103: 10997-11002. 38. Kritz AB, Yu J, Wright PL, Wan S, George SJ, et al. (2008) In vivo modulation of Nogo-B attenuates neointima formation. Mol Ther 16: 1798-1804. 39. Di Lorenzo A, Manes TD, Davalos A, Wright PL, Sessa WC (2011) Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation. Blood 117: 2284-2295. 40. Gao L, Utsumi T, Tashiro K, Liu B, Zhang D, et al. (2013) Reticulon 4B (Nogo-B) facilitates hepatocyte proliferation and liver regeneration in mice. Hepatology 57: 1992-2003. 41. Xu WJ, Shen GQ, Li Q (2013) Biological function of Nogo-B. Sheng Li Xue Bao 65: 445-450. 42. Chen Y, Tang X, Zhang X, Zhuang L (2009) New mutations of Nogo-C in hepatocellular carcinoma. Mol Biol Rep 36: 377-380. 43. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377: 577-595. 44. Wanner M, Lang DM, Bandtlow CE, Schwab ME, Bastmeyer M, et al. (1995) Reevaluation of the growth-permissive substrate properties of goldfish optic nerve myelin and myelin proteins. J Neurosci 15: 7500-7508. 45. Diekmann H, Klinger M, Oertle T, Heinz D, Pogoda HM, et al. (2005) Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo-A in fish. Mol Biol Evol 22: 1635-1648. 46. Abdesselem H, Shypitsyna A, Solis GP, Bodrikov V, Stuermer CA (2009) No Nogo66- and NgR-mediated inhibition of regenerating axons in the zebrafish optic nerve. J Neurosci 29: 15489-15498. 47. Brosamle C, Halpern ME (2009) Nogo-Nogo receptor signalling in PNS axon outgrowth and pathfinding. Mol Cell Neurosci 40: 401-409. 48. Oertle T, Klinger M, Stuermer CA, Schwab ME (2003) A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. Faseb J 17: 1238-1247. 49. Chen YC, Wu BK, Chu CY, Cheng CH, Han HW, et al. (2010) Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos. Nucleic Acids Res 38: 4635-4650. 50. Oertle T, Huber C, van der Putten H, Schwab ME (2003) Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4. J Mol Biol 325: 299-323. 51. Klinger M, Taylor JS, Oertle T, Schwab ME, Stuermer CA, et al. (2004) Identification of Nogo-66 receptor (NgR) and homologous genes in fish. Mol Biol Evol 21: 76-85. 52. Zhao B, Chun C, Liu Z, Horswill MA, Pramanik K, et al. (2010) Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood 116: 5423-5433. 53. Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, et al. (2012) Death receptors DR6 and TROY regulate brain vascular development. Dev Cell 22: 403-417. 54. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 8: 284-295. 55. Mattson RH (1995) Efficacy and adverse effects of established and new antiepileptic drugs. Epilepsia 36 Suppl 2: S13-26. 56. Monneret C (2007) Histone deacetylase inhibitors for epigenetic therapy of cancer. Anticancer Drugs 18: 363-370. 57. Pillai R, Coverdale LE, Dubey G, Martin CC (2004) Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn 231: 647-654. 58. Yamaguchi M, Tonou-Fujimori N, Komori A, Maeda R, Nojima Y, et al. (2005) Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132: 3027-3043. 59. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet 3: 717-724. 60. Key B, Devine CA (2003) Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 25: 1-6. 61. Penberthy WT, Shafizadeh E, Lin S (2002) The zebrafish as a model for human disease. Front Biosci 7: d1439-1453. 62. Chong SW, Emelyanov A, Gong Z, Korzh V (2001) Expression pattern of two zebrafish genes, cxcr4a and cxcr4b. Mech Dev 109: 347-354. 63. Nasevicius A, Ekker SC (2000) Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26: 216-220. 64. Urtishak KA, Choob M, Tian X, Sternheim N, Talbot WS, et al. (2003) Targeted gene knockdown in zebrafish using negatively charged peptide nucleic acid mimics. Dev Dyn 228: 405-413. 65. Kawakami K (2005) Transposon tools and methods in zebrafish. Dev Dyn 234: 244-254. 66. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, et al. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123: 37-46. 67. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1-36. 68. Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, et al. (2000) Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227: 279-293. 69. Huang P, Zhu Z, Lin S, Zhang B (2012) Reverse genetic approaches in zebrafish. J Genet Genomics 39: 421-433. 70. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110: 13904-13909. 71. Westerfield Me (2007) THE ZEBRAFISH BOOK: A guide for the laboratory use of zebrafish (Danio rerio), 5th Edition. Eugene. 72. Sahly I, Andermann P, Petit C (1999) The zebrafish eya1 gene and its expression pattern during embryogenesis. Dev Genes Evol 209: 399-410. 73. Dorsky RI, Snyder A, Cretekos CJ, Grunwald DJ, Geisler R, et al. (1999) Maternal and embryonic expression of zebrafish lef1. Mech Dev 86: 147-150. 74. Roehl H, Nusslein-Volhard C (2001) Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr Biol 11: 503-507. 75. Chou CM, Chen YC, Lee MT, Chen GD, Lu IC, et al. (2006) Expression and characterization of a brain-specific protein kinase BSK146 from zebrafish. Biochem Biophys Res Commun 340: 767-775. 76. Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebrafish. Proc Natl Acad Sci U S A 96: 7558-7562. 77. Ungos JM, Karlstrom RO, Raible DW (2003) Hedgehog signaling is directly required for the development of zebrafish dorsal root ganglia neurons. Development 130: 5351-5362. 78. Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, et al. (2008) OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res 68: 3999-4009. 79. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253-310. 80. Feng Y, Xu Q (2010) Pivotal role of hmx2 and hmx3 in zebrafish inner ear and lateral line development. Dev Biol 339: 507-518. 81. Chen YC, Wu BK, Chu CY, Cheng CH, Han HW, et al. (2010) Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos. Nucleic Acids Res 38: 4635-4650. 82. Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M (2000) Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 98: 3-17. 83. Lightman EG, Harrison MR, Cunliffe VT Opposing actions of histone deacetylase 1 and Notch signalling restrict expression of erm and fgf20a to hindbrain rhombomere centres during zebrafish neurogenesis. Int J Dev Biol 55: 597-602. 84. Gilmour D, Knaut H, Maischein HM, Nusslein-Volhard C (2004) Towing of sensory axons by their migrating target cells in vivo. Nat Neurosci 7: 491-492. 85. Metcalfe WK (1985) Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish. J Comp Neurol 238: 218-224. 86. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, et al. (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96: 5522-5527. 87. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, et al. (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172-1183. 88. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, et al. (2004) DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23: 8520-8526. 89. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, et al. (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357-362. 90. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, et al. (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1: 423-434. 91. Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2: 643-653. 92. Ribeiro D, Ellwanger K, Glagow D, Theofilopoulos S, Corsini NS, et al. (2011) Dkk1 regulates ventral midbrain dopaminergic differentiation and morphogenesis. PLoS One 6: e15786. 93. Hashimoto H, Itoh M, Yamanaka Y, Yamashita S, Shimizu T, et al. (2000) Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217: 138-152. 94. Untergasser G, Martowicz A, Hermann M, Tochterle S, Meyer D (2011) Distinct expression patterns of dickkopf genes during late embryonic development of Danio rerio. Gene Expr Patterns 11: 491-500. 95. Fafilek B, Krausova M, Vojtechova M, Pospichalova V, Tumova L, et al. (2013) Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wnt signaling in intestinal stem cells. Gastroenterology 144: 381-391. 96. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, et al. (2009) The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113: 517-525. 97. Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, et al. (2007) Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 97: 964-970. 98. Wirths O, Waha A, Weggen S, Schirmacher P, Kuhne T, et al. (2003) Overexpression of human Dickkopf-1, an antagonist of wingless/WNT signaling, in human hepatoblastomas and Wilms' tumors. Lab Invest 83: 429-434. 99. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, et al. (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349: 2483-2494. 100. Hall CL, Kang S, MacDougald OA, Keller ET (2006) Role of Wnts in prostate cancer bone metastases. J Cell Biochem 97: 661-672. 101. Aguilera O, Pena C, Garcia JM, Larriba MJ, Ordonez-Moran P, et al. (2007) The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 28: 1877-1884. 102. Harding MJ, Nechiporuk AV (2012) Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation. Development 139: 3130-3135. 103. Pereira TC, Rico EP, Rosemberg DB, Schirmer H, Dias RD, et al. (2010) Zebrafish as a model organism to evaluate drugs potentially able to modulate sirtuin expression. Zebrafish 8: 9-16. 104. Menegola E, Di Renzo F, Broccia ML, Giavini E (2006) Inhibition of histone deacetylase as a new mechanism of teratogenesis. Birth Defects Res C Embryo Today 78: 345-353. 105. Harrison MR, Georgiou AS, Spaink HP, Cunliffe VT (2011) The epigenetic regulator Histone Deacetylase 1 promotes transcription of a core neurogenic programme in zebrafish embryos. BMC Genomics 12: 24. 106. Lightman EG, Harrison MR, Cunliffe VT (2011) Opposing actions of histone deacetylase 1 and Notch signalling restrict expression of erm and fgf20a to hindbrain rhombomere centres during zebrafish neurogenesis. Int J Dev Biol 55: 597-602. 107. Guarani V, Deflorian G, Franco CA, Kruger M, Phng LK, et al. (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473: 234-238. 108. Kaluza D, Kroll J, Gesierich S, Yao TP, Boon RA, et al. (2011) Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. Embo J 30: 4142-4156. 109. de Groh ED, Swanhart LM, Cosentino CC, Jackson RL, Dai W, et al. (2010) Inhibition of histone deacetylase expands the renal progenitor cell population. J Am Soc Nephrol 21: 794-802. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58765 | - |
| dc.description.abstract | The fish lateral line (LL) is a mechanosensory system closely related to the hearing system of higher vertebrates, and it is composed of several neuromasts located on the surface of the fish. These neuromasts can detect changes in external water flow, to assist fish in maintaining a stationary position in a stream. In the present study, we identified a novel function of Nogo/Nogo receptor signaling in the formation of zebrafish neuromasts. Nogo signaling in zebrafish, like that in mammals, involves three ligands and four receptors, as well as three co-receptors (TROY, p75, and LINGO-1). We first demonstrated that Nogo-C2, NgRH1a, p75, and TROY are able to form a Nogo-C2 complex, and that disintegration of this complex causes defective neuromast formation in zebrafish. Time-lapse recording of the CldnB::lynEGFP transgenic line revealed that functional obstruction of the Nogo-C2 complex causes disordered morphogenesis, and reduces rosette formation in the posterior LL (PLL) primordium during migration. Consistent with these findings, hair-cell progenitors were lost from the PLL primordium in p75, TROY, and Nogo-C2/NgRH1a morphants. Notably, the expression levels of pea3, a downstream marker of Fgf signaling, and dkk1b, a Wnt signaling inhibitor, were both decreased in p75, TROY, and Nogo-C2/NgRH1a morphants; moreover, dkk1b mRNA injection could rescue the defects in neuromast formation resulting from knockdown of p75 or TROY. We thus suggest that a novel Nogo-C2 complex, consisting of Nogo-C2, NgRH1a, p75, and TROY, regulates Fgf signaling and dkk1b expression, thereby ensuring stable organization of the PLL primordium.
In addition, we also demonstrated that the neuromast formation was abolished in embryos treated with HDAC inhibitors, OSU-HDAC42 and trichostatin A, and the respective expression of Nogo-C2, NgRH1a, p75 and TROY was down-regulated in these embryos. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:29:49Z (GMT). No. of bitstreams: 1 ntu-102-D96b46003-1.pdf: 6426555 bytes, checksum: 4da59877810829314290d1f308820965 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Content i
中文摘要 iv Abstract v Abbreviations vi Introduction 1 Development of the zebrafish lateral line 1 Signaling pathways regulating zebrafish lateral line development 2 Nogo and Nogo receptor signaling in mammals 3 Nogo and Nogo receptor signaling in zebrafish 5 The roles of histone deacetylase in zebrafish development 6 Zebrafish as an experimental model 7 Specific aims 9 Materials and methods 11 Zebrafish care 11 Total RNA extraction, first-strand cDNA synthesis and RT-PCR 11 Isolation of full-length p75, LINGO-1, and TROY from zebrafish 11 Whole-mount in situ hybridization 12 Injection of morpholinos and capped mRNA 12 Neuromast staining 13 Immunoprecipitation 13 Expression plasmid construction 14 Alkaline phosphatase (AP)-binding assay 14 Capped mRNA synthesis 15 BrdU incorporation assay and whole-mount immunostaining 15 TUNEL assay 15 Time-lapse recording and confocal images 16 Treatment of HDAC inhibitors 16 Results 17 Isolation of three Nogo co-receptors from zebrafish 17 Expression profiles of Nogo co-receptors at different developmental stages, as revealed by whole-mount in situ hybridization 18 Morpholino knockdown of the Nogo co-receptors, p75 and TROY, resulted in significant loss of neuromasts in the zebrafish LL 18 Knockdown of Rtn4-m/Nogo-C2 and Nogo receptor, NgRH1a, caused defects in zebrafish neuromast formation 20 Association of TROY with p75 20 Zebrafish Rtn4-l/Nogo-B binds to NgR, while Rtn4-m/Nogo-C2 binds to the NgRH1a and NgRH1b receptors 21 Cell proliferation in the PLL primordium is not mediated by Nogo/Nogo receptor signaling during zebrafish LL development 22 The Rtn4-m/Nogo-C2 complex regulates primordium organization and rosette formation during PLL development 24 Disruption of the Rtn4-m/Nogo-C2 complex results in reduced expression of downstream markers of Fgf signaling in the PLL primordium 25 Nogo/Nogo receptor signaling regulates neuromast formation by mediating expression of dkk1b in zebrafish 27 HDAC-mediated epigenetic regulation is critical for the formation of Nogo/Nogo receptor complex and neuromast in zebrafish embryos 27 Discussion 29 Conclusion and perspective 35 References 37 Figures 45 Table 71 Appendix 72 | |
| dc.language.iso | en | |
| dc.subject | Nogo接受器複合體 | zh_TW |
| dc.subject | 側線原基質 | zh_TW |
| dc.subject | 側線 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 神經丘 | zh_TW |
| dc.subject | lateral line | en |
| dc.subject | p75 | en |
| dc.subject | TROY | en |
| dc.subject | neuromast | en |
| dc.subject | primordium | en |
| dc.subject | Nogo-C2/Nogo receptor complex | en |
| dc.subject | zebrafish | en |
| dc.title | Nogo/Nogo接受器複合體在斑馬魚側線發育之功能性分析 | zh_TW |
| dc.title | Functional studies of Nogo/Nogo receptor complex in zebrafish lateral line development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李明亭,黃聲蘋,胡清華,李明學 | |
| dc.subject.keyword | Nogo接受器複合體,神經丘,側線原基質,側線,斑馬魚, | zh_TW |
| dc.subject.keyword | Nogo-C2/Nogo receptor complex,p75,TROY,neuromast,primordium,lateral line,zebrafish, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-03 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
