請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋 | |
| dc.contributor.author | Wen-Yea Yau | en |
| dc.contributor.author | 姚文雅 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:29:26Z | - |
| dc.date.available | 2017-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-07 | |
| dc.identifier.citation | [1] Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94:153-6.
[2] World Health Organization IAfRoC. GLOBOCAN 2008. (http://globocan.iarc.fr.). [3] El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264-73 e1. [4] El-Serag HB. Epidemiology of hepatocellular carcinoma in USA. Hepatology research : the official journal of the Japan Society of Hepatology. 2007;37 Suppl 2:S88-94. [5] Sung JL. Hepatitis B virus infection and its sequelae in Taiwan. Gastroenterol Jpn. 1984;19:363-6. [6] Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45:529-38. [7] El-Serag HB. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol. 2002;35:S72-8. [8] Ogunbiyi JO. Hepatocellular carcinoma in the developing world. Semin Oncol. 2001;28:179-87. [9] Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339-46. [10] El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557-76. [11] Bartosch B. Hepatitis B and C viruses and hepatocellular carcinoma. Viruses. 2010;2:1504-9. [12] Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology. 2004;127:S56-61. [13] Purcell RH. The discovery of the hepatitis viruses. Gastroenterology. 1993;104:955-63. [14] Hepatitis B vaccines. Releve epidemiologique hebdomadaire / Section d'hygiene du Secretariat de la Societe des Nations = Weekly epidemiological record / Health Section of the Secretariat of the League of Nations. 2004;79:255-63. [15] Belongia EA, Costa J, Gareen IF, Grem JL, Inadomi JM, Kern ER, et al. NIH consensus development statement on management of hepatitis B. NIH Consens State Sci Statements. 2008;25:1-29. [16] Amin J, Dore GJ, O'Connell DL, Bartlett M, Tracey E, Kaldor JM, et al. Cancer incidence in people with hepatitis B or C infection: a large community-based linkage study. J Hepatol. 2006;45:197-203. [17] Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nature reviews Microbiology. 2007;5:453-63. [18] World Health Organization. Hepatitis C. (http://wwwwhoint/csr/disease/en/)2002. [19] Guengerich FP, Johnson WW, Shimada T, Ueng YF, Yamazaki H, Langouet S. Activation and detoxication of aflatoxin B1. Mutation research. 1998;402:121-8. [20] Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC monographs on the evaluation of carcinogenic risks to humans Supplement / World Health Organization, International Agency for Research on Cancer. 1987;7:1-440. [21] Jackson PE, Groopman JD. Aflatoxin and liver cancer. Bailliere's best practice & research Clinical gastroenterology. 1999;13:545-55. [22] Lieber CS. Alcohol and the liver: 1994 update. Gastroenterology. 1994;106:1085-105. [23] Sanyal AJ, Yoon SK, Lencioni R. The etiology of hepatocellular carcinoma and consequences for treatment. The oncologist. 2010;15 Suppl 4:14-22. [24] Pateron D, Ganne N, Trinchet JC, Aurousseau MH, Mal F, Meicler C, et al. Prospective study of screening for hepatocellular carcinoma in Caucasian patients with cirrhosis. J Hepatol. 1994;20:65-71. [25] Murakami T, Mochizuki K, Nakamura H. Imaging evaluation of the cirrhotic liver. Semin Liver Dis. 2001;21:213-24. [26] Chalasani N, Horlander JC, Sr., Said A, Hoen H, Kopecky KK, Stockberger SM, Jr., et al. Screening for hepatocellular carcinoma in patients with advanced cirrhosis. Am J Gastroenterol. 1999;94:2988-93. [27] Bialecki ES, Di Bisceglie AM. Diagnosis of hepatocellular carcinoma. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2005;7:26-34. [28] Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology and therapeutics. 2001;69:89-95. [29] Piantino P, Arrigoni A, Brunetto MR, Gindro T. Alpha-fetoprotein in hepatic pathology and hepatocarcinoma. The Journal of nuclear medicine and allied sciences. 1989;33:34-8. [30] Lok AS, Lai CL. alpha-Fetoprotein monitoring in Chinese patients with chronic hepatitis B virus infection: role in the early detection of hepatocellular carcinoma. Hepatology. 1989;9:110-5. [31] Sun W, Zhong F, Zhi L, Zhou G, He F. Systematic -omics analysis of HBV-associated liver diseases. Cancer Lett. 2009;286:89-95. [32] Johnson PJ. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. Clinics in liver disease. 2001;5:145-59. [33] Wang CS, Lin CL, Lee HC, Chen KY, Chiang MF, Chen HS, et al. Usefulness of serum des-gamma-carboxy prothrombin in detection of hepatocellular carcinoma. World J Gastroenterol. 2005;11:6115-9. [34] Liebman HA, Furie BC, Tong MJ, Blanchard RA, Lo KJ, Lee SD, et al. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N Engl J Med. 1984;310:1427-31. [35] Cui JW, Li WH, Wang J, Li AL, Li HY, Wang HX, et al. Proteomics-based identification of human acute leukemia antigens that induce humoral immune response. Mol Cell Proteomics. 2005;4:1718-24. [36] Yamamoto A, Shimizu E, Ogura T, Sone S. Detection of auto-antibodies against L-myc oncogene products in sera from lung cancer patients. Int J Cancer. 1996;69:283-9. [37] Le Naour F, Brichory F, Misek DE, Brechot C, Hanash SM, Beretta L. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics. 2002;1:197-203. [38] Anderson KS, Sibani S, Wallstrom G, Qiu J, Mendoza EA, Raphael J, et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J Proteome Res. 2011;10:85-96. [39] Van den Eynde BJ, van der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol. 1997;9:684-93. [40] Kobold S, Lutkens T, Cao Y, Bokemeyer C, Atanackovic D. Autoantibodies against tumor-related antigens: incidence and biologic significance. Hum Immunol. 2010;71:643-51. [41] Tan EM, Zhang J. Autoantibodies to tumor-associated antigens: reporters from the immune system. Immunol Rev. 2008;222:328-40. [42] Morita T, Tachikawa N, Kumamaru T, Nukui A, Ikeda H, Suzuki K, et al. Serum anti-p53 antibodies and p53 protein status in the sera and tumors from bladder cancer patients. Eur Urol. 2000;37:79-84. [43] Goodell V, Salazar LG, Urban N, Drescher CW, Gray H, Swensen RE, et al. Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J Clin Oncol. 2006;24:762-8. [44] Disis ML, Bernhard H, Gralow JR, Hand SL, Emery SR, Calenoff E, et al. Immunity to the HER-2/neu oncogenic protein. Ciba Found Symp. 1994;187:198-207; discussion -11. [45] Disis ML, Grabstein KH, Sleath PR, Cheever MA. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res. 1999;5:1289-97. [46] Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol. 1997;15:3363-7. [47] Yamamoto A, Shimizu E, Takeuchi E, Houchi H, Doi H, Bando H, et al. Infrequent presence of anti-c-Myc antibodies and absence of c-Myc oncoprotein in sera from lung cancer patients. Oncology. 1999;56:129-33. [48] Covini G, Chan EK, Nishioka M, Morshed SA, Reed SI, Tan EM. Immune response to cyclin B1 in hepatocellular carcinoma. Hepatology. 1997;25:75-80. [49] Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer. 1982;30:403-8. [50] Soussi T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res. 2000;60:1777-88. [51] Labrecque S, Naor N, Thomson D, Matlashewski G. Analysis of the anti-p53 antibody response in cancer patients. Cancer Res. 1993;53:3468-71. [52] Winter SF, Minna JD, Johnson BE, Takahashi T, Gazdar AF, Carbone DP. Development of antibodies against p53 in lung cancer patients appears to be dependent on the type of p53 mutation. Cancer Res. 1992;52:4168-74. [53] Lubin R, Schlichtholz B, Bengoufa D, Zalcman G, Tredaniel J, Hirsch A, et al. Analysis of p53 antibodies in patients with various cancers define B-cell epitopes of human p53: distribution on primary structure and exposure on protein surface. Cancer Res. 1993;53:5872-6. [54] Disis ML, Bernhard H, Jaffee EM. Use of tumour-responsive T cells as cancer treatment. Lancet. 2009;373:673-83. [55] Tan HT, Low J, Lim SG, Chung MC. Serum autoantibodies as biomarkers for early cancer detection. The FEBS journal. 2009;276:6880-904. [56] Desmetz C, Maudelonde T, Mange A, Solassol J. Identifying autoantibody signatures in cancer: a promising challenge. Expert review of proteomics. 2009;6:377-86. [57] Caron M, Choquet-Kastylevsky G, Joubert-Caron R. Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics. 2007;6:1115-22. [58] Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92:11810-3. [59] Chen YT, Gure AO, Scanlan MJ. Serological analysis of expression cDNA libraries (SEREX): an immunoscreening technique for identifying immunogenic tumor antigens. Methods in molecular medicine. 2005;103:207-16. [60] Gunawardana CG, Diamandis EP. High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett. 2007;249:110-9. [61] Mintz PJ, Kim J, Do KA, Wang X, Zinner RG, Cristofanilli M, et al. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol. 2003;21:57-63. [62] Liu H, Zhang J, Wang S, Pang Z, Wang Z, Zhou W, et al. Screening of autoantibodies as potential biomarkers for hepatocellular carcinoma by using T7 phase display system. Cancer epidemiology. 2012;36:82-8. [63] Babel I, Barderas R, Diaz-Uriarte R, Moreno V, Suarez A, Fernandez-Acenero MJ, et al. Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. Mol Cell Proteomics. 2011;10:M110 001784. [64] Anderson KS, LaBaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res. 2005;4:1123-33. [65] Fulton KM, Martin SS, Wolfraim L, Twine SM. Methods and applications of serological proteome analysis. Methods in molecular biology (Clifton, NJ). 2013;1061:97-112. [66] Casiano CA, Mediavilla-Varela M, Tan EM. Tumor-associated antigen arrays for the serological diagnosis of cancer. Mol Cell Proteomics. 2006;5:1745-59. [67] Kijanka G, Murphy D. Protein arrays as tools for serum autoantibody marker discovery in cancer. J Proteomics. 2009;72:936-44. [68] Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, Caron M. Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling. Ann N Y Acad Sci. 2007;1107:223-30. [69] Lee WM. Hepatitis B virus infection. N Engl J Med. 1997;337:1733-45. [70] Bertino G, Ardiri A, Malaguarnera M, Malaguarnera G, Bertino N, Calvagno GS. Hepatocellualar carcinoma serum markers. Semin Oncol. 2012;39:410-33. [71] Masuzaki R, Karp SJ, Omata M. New serum markers of hepatocellular carcinoma. Semin Oncol. 2012;39:434-9. [72] Daniele B, Bencivenga A, Megna AS, Tinessa V. Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology. 2004;127:S108-12. [73] Stefaniuk P, Cianciara J, Wiercinska-Drapalo A. Present and future possibilities for early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2010;16:418-24. [74] Bruix J, Sherman M, Practice Guidelines Committee AAftSoLD. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208-36. [75] Poon D, Anderson BO, Chen LT, Tanaka K, Lau WY, Van Cutsem E, et al. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol. 2009;10:1111-8. [76] Lee JM, Yoon JH, Kim KW. Diagnosis of hepatocellular carcinoma: newer radiological tools. Semin Oncol. 2012;39:399-409. [77] Shang S, Plymoth A, Ge S, Feng Z, Rosen HR, Sangrajrang S, et al. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology. 2012;55:483-90. [78] Li L, Chen SH, Yu CH, Li YM, Wang SQ. Identification of hepatocellular-carcinoma-associated antigens and autoantibodies by serological proteome analysis combined with protein microarray. J Proteome Res. 2008;7:611-20. [79] Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Harada T, Fujimoto M, et al. Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics. 2006;6:3894-900. [80] Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci U S A. 2007;104:17494-9. [81] Dib H, Tamby MC, Bussone G, Regent A, Berezne A, Lafine C, et al. Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2012;39:1405-14. [82] Trembleau S, Hoffmann M, Meyer B, Nell V, Radner H, Zauner W, et al. Immunodominant T-cell epitopes of hnRNP-A2 associated with disease activity in patients with rheumatoid arthritis. Eur J Immunol. 2010;40:1795-808. [83] Schett G, Dumortier H, Hoefler E, Muller S, Steiner G. B cell epitopes of the heterogeneous nuclear ribonucleoprotein A2: identification of a new specific antibody marker for active lupus disease. Annals of the rheumatic diseases. 2009;68:729-35. [84] Creaney J, Dick IM, Yeoman D, Wong S, Robinson BW. Auto-antibodies to beta-F1-ATPase and vimentin in malignant mesothelioma. PloS one. 2011;6:e26515. [85] Nagata Y, Ono S, Matsuo M, Gnjatic S, Valmori D, Ritter G, et al. Differential presentation of a soluble exogenous tumor antigen, NY-ESO-1, by distinct human dendritic cell populations. Proc Natl Acad Sci U S A. 2002;99:10629-34. [86] Chen YT. Cancer vaccine: identification of human tumor antigens by SEREX. Cancer J. 2000;6 Suppl 3:S208-17. [87] Zinkernagel RM, Hengartner H. Regulation of the immune response by antigen. Science. 2001;293:251-3. [88] Hui J, Stangl K, Lane WS, Bindereif A. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nature structural biology. 2003;10:33-7. [89] Liu X, Mertz JE. HnRNP L binds a cis-acting RNA sequence element that enables intron-dependent gene expression. Genes Dev. 1995;9:1766-80. [90] Guang S, Felthauser AM, Mertz JE. Binding of hnRNP L to the pre-mRNA processing enhancer of the herpes simplex virus thymidine kinase gene enhances both polyadenylation and nucleocytoplasmic export of intronless mRNAs. Mol Cell Biol. 2005;25:6303-13. [91] Hwang B, Lim JH, Hahm B, Jang SK, Lee SW. hnRNP L is required for the translation mediated by HCV IRES. Biochem Biophys Res Commun. 2009;378:584-8. [92] Hahm B, Kim YK, Kim JH, Kim TY, Jang SK. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J Virol. 1998;72:8782-8. [93] Hamilton BJ, Wang XW, Collins J, Bloch D, Bergeron A, Henry B, et al. Separate cis-trans pathways post-transcriptionally regulate murine CD154 (CD40 ligand) expression: a novel function for CA repeats in the 3'-untranslated region. J Biol Chem. 2008;283:25606-16. [94] Hui J, Reither G, Bindereif A. Novel functional role of CA repeats and hnRNP L in RNA stability. Rna. 2003;9:931-6. [95] Shih SC, Claffey KP. Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem. 1999;274:1359-65. [96] Boukakis G, Patrinou-Georgoula M, Lekarakou M, Valavanis C, Guialis A. Deregulated expression of hnRNP A/B proteins in human non-small cell lung cancer: parallel assessment of protein and mRNA levels in paired tumour/non-tumour tissues. BMC Cancer. 2010;10:434. [97] David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463:364-8. [98] Rauch J, O'Neill E, Mack B, Matthias C, Munz M, Kolch W, et al. Heterogeneous nuclear ribonucleoprotein H blocks MST2-mediated apoptosis in cancer cells by regulating A-Raf transcription. Cancer Res. 2010;70:1679-88. [99] Tauler J, Zudaire E, Liu H, Shih J, Mulshine JL. hnRNP A2/B1 modulates epithelial-mesenchymal transition in lung cancer cell lines. Cancer Res. 2010;70:7137-47. [100] Goehe RW, Shultz JC, Murudkar C, Usanovic S, Lamour NF, Massey DH, et al. hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. J Clin Invest. 2010;120:3923-39. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58758 | - |
| dc.description.abstract | 肝癌是目前世界上死亡率最高的癌症之一且預後較差,B型肝炎病毒感染是肝癌發展中的最主要的致病因子,已有報導指出在許多癌症中腫瘤相關抗原及自體抗體可以成為潛力的生物標誌,藉由鑑定腫瘤發展早期引發免疫反應的腫瘤相關抗原可做為癌症早期診斷並發展出治療方法,因此我們利用免疫蛋白體學方法鑑定與B型肝炎病毒相關肝細胞癌病人血清反應的腫瘤相關抗原,將二維膠片上有免疫反應的蛋白點切下並利用奈流液相層析質譜儀分析,結果顯示總共鑑定到16個腫瘤相關抗原,進一步表現重組蛋白進行免疫墨點法及酵素結合免疫分析,其中異質核核醣核蛋白L是一個顯著的腫瘤相關抗原(60%),N端富含甘胺酸區域具有引起免疫反應的最主要抗原決定區,在B型肝炎病毒相關肝細胞癌病人中自體抗體有顯著性增高的現象,並且與腫瘤大小與存活率有高度相關性。此外也發現在肝癌組織中異質核核醣核蛋白L有高量表達的現象,在細胞實驗中發現減少異質核核醣核蛋白L表現導致細胞生長、移動及轉移受到抑制。由本研究顯示異質核核醣核蛋白L的富含甘胺酸區域具有最主要抗原決定區並且可以成為一個偵測B型肝炎病毒相關肝細胞癌病人的潛力生物標記,此外,在癌化過程中異質核核醣核蛋白L可能是藉由促進肝癌細胞生長及惡化。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is associated with a poor prognosis and remains one of the leading causes of cancer death worldwide. Hepatitis B virus (HBV) infection is the most prominent etiologic factor for developing HCC. Tumor-associated antigens (TAAs) and autoantibodies have been reported as potential markers in different cancers. Identification of TAAs capable of eliciting an immune response early in tumor development will lead to early diagnosis of cancer and the development therapeutic approach. Here, we employed an immunoproteomic approach to identify TAAs in the sera of patients with HBV-related HCC (HBV-HCC). Immunoreactive spots were excised from 2-DE and analyzed by nano-LC-MS/MS. This analysis identified 16 HCC-associated antigens, including hnRNP L. The antigenicity of hnRNP L was further validated by immunoblotting and ELISA using recombinant proteins. Autoantibodies against hnRNP L were found in 60% patients with HBV-HCC. Using sera from hnRNP L-positive patients, we found that most of these antibodies recognized glycine-rich region in the N-terminus of hnRNP L. In addition, high titers of autoantibodies against hnRNP L were found in HBV-HCC patients’ sera and were associated with increased tumor size and reduced survival rate. hnRNP L protein was also found highly expressed in HCC tissue. Knockdown of hnRNP L significantly suppressed cell growth, migration, and invasion in vitro. Our results indicate that an N-terminal epitope of hnRNP L is a potential biomarker for the diagnosis of HBV-HCC and show that hnRNP L contributes to HCC progression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:29:26Z (GMT). No. of bitstreams: 1 ntu-103-D95442005-1.pdf: 3796274 bytes, checksum: 9c8179b77fe0d3948a9578a7f355b449 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iii Abbreviations v Table of Contents viii Chapter I – Overview and Rationale 1 1.1 Liver cancer 2 1.2 Risk factors for the development of HCC 3 1.3 Diagnosis of HCC 6 1.4 Tumor-associated antigens (TAAs) and autoantibodies 8 1.5 Specific aim 14 Chapter II – Autoantibody recognition of an N-terminal epitope of hnRNP L marks the risk for developing HBV-related hepatocellular carcinoma 16 2.1 Introduction 17 2.2 Experimental Procedures 20 Patients and serum samples 20 Cell culture 20 2-DE and 2-D immunoblotting 21 In-gel digestion 22 LTQ OrbiTrap Velos MS analysis and protein identification 22 Cloning and purification of recombinant proteins 23 Competition ELISA 24 Immunoblotting analysis 25 Lentiviral vector-mediated transduction of hnRNP L-specific shRNA 26 Anchorage-independent growth 26 Cell proliferation assay 26 Cell-cycle analysis 27 Wound-healing assay 27 Matrigel invasion assay 28 Statistical analysis 28 2.3 Results 30 TAAs and autoantibodies identification in HBV-related HCC 30 Identification of HBV-HCC-related TAAs by 2-D immunoblotting analysis 30 Analysis of the prevalence of autoantibodies against hnRNP L, lamin and hnRNP B1 31 Serum autoantibodies against hnRNP L-L isoforms 33 Identification of the major epitope of hnRNP L-L 34 Correlation between the epitope titer of hnRNP L-67–88 autoantibodies and the clinical characteristics of HCC patients 36 hnRNP L knockdown in HCC cells inhibits anchorage-independent growth and proliferation by inducing cell-cycle arrest in the G0/G1 phase 38 hnRNP L knockdown inhibits the migration and invasion of HCC cells 39 2.4 Discussion 41 Chapter III –Conclusion and perspectives 46 Conclusion and perspectives 47 List of Tables & Figures 50 References 80 Appendix 87 List of instrument 88 | |
| dc.language.iso | en | |
| dc.subject | B型肝炎病毒 | zh_TW |
| dc.subject | 異質核核醣核蛋白L | zh_TW |
| dc.subject | 血清蛋白體分析技術 | zh_TW |
| dc.subject | 腫瘤相關抗原 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 自體抗體 | zh_TW |
| dc.subject | tumor-associated antigens | en |
| dc.subject | hepatitis B virus | en |
| dc.subject | hepatocellular carcinoma | en |
| dc.subject | heterogeneous nuclear ribonucleoprotein L | en |
| dc.subject | serological proteome analysis | en |
| dc.subject | autoantibody | en |
| dc.title | 利用免疫蛋白體學方法鑑定腫瘤相關抗原作為肝細胞癌之生物標記 | zh_TW |
| dc.title | Using an immunoproteomic approach to identify tumor-associated antigens as biomarkers in hepatocellular carcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 許金川,陳健弘,蔡孟勳,郭敏玲 | |
| dc.subject.keyword | 自體抗體,B型肝炎病毒,肝細胞癌,異質核核醣核蛋白L,血清蛋白體分析技術,腫瘤相關抗原, | zh_TW |
| dc.subject.keyword | autoantibody,hepatitis B virus,hepatocellular carcinoma,heterogeneous nuclear ribonucleoprotein L,serological proteome analysis,tumor-associated antigens, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
