請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58753完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
| dc.contributor.author | Cheng-Han Du | en |
| dc.contributor.author | 杜承翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:29:09Z | - |
| dc.date.available | 2019-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-09 | |
| dc.identifier.citation | [1] Alam, M. Z., J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Compact low loss
and broadband hybrid plasmonic directional coupler,” Optics Express, vol. 21, no. 13, pp. 16 029–16 034, Jul. 2013. [2] Ando, T., H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, “Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” Journal of Lightwave Technology, vol. 20, no. 8, pp. 1627–1634, 2002. [3] Anemogiannis, E. and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” Journal of Lightwave Technology, vol. 10, no. 10, pp. 1344–1351, 1992. [4] Ao, X., T.-H. Her, and L. W. Casperson, “Gain guiding in large-core Bragg fibers,” Optics Express, vol. 17, no. 25, pp. 22 666–22 672, Dec. 2009. [5] Barnes, W. L., A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, Aug. 2003. [6] Berenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185 –200, 1994. [7] Berini, P., “Long-range surface plasmon polaritons,” Advances in Optics and Photonics, vol. 1, no. 3, pp. 484–588, Nov. 2009. [8] Bian, Y. and Q. Gong, “Optical performance of one-dimensional hybrid metal– insulator–metal structures at telecom wavelength,” Optics Communications, vol. 308, pp. 30 –35, 2013. 103 [9] Bian, Y., Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Optics Express, vol. 17, no. 23, pp. 21 320–21 325, Nov. 2009. [10] Burden, R. and J. Faires, Numerical Analysis, 8th ed. Brooks Cole, 2004. [11] Charbonneau, R., N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Optics Express, vol. 13, no. 3, pp. 977–984, Feb. 2005. [12] Chen, L., T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Optics Express, vol. 20, no. 18, pp. 20 535–20 544, Aug. 2012. [13] Chew, W. C., J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microwave and Optical Technology Letters, vol. 15, no. 6, pp. 363–369, 1997. [14] Chiang, P.-J., C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequencydomain (PSFD) formulations,” IEEE Journal of Quantum Electronics, vol. 44, no. 1, pp. 56–66, 2008. [15] Chiang, Y.-C., Y.-P. Chiou, and H.-C. Chang, “Improved full-vectorial finitedifference mode solver for optical waveguides with step-index profiles,” Journal of Lightwave Technology, vol. 20, no. 8, pp. 1609–1618, 2002. [16] Chiang, Y.-C., Y.-P. Chiou, and H.-C. Chang, “Finite-difference frequency-domain analysis of 2-D photonic crystals with curved dielectric interfaces,” Journal of Lightwave Technology, vol. 26, no. 8, pp. 971–976, 2008. [17] Chiou, Y.-P. and H.-C. Chang, “An efficient wide-angle beam propagation method,” in Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (Conf. Publ. No.: 448), vol. 2, 1997, 220–223 vol.2. 104 [18] Chiou, Y.-P. and C.-H. Du, “Wide-angle beam propagation method using local reference indices,” Journal of Lightwave Technology, vol. 27, no. 16, pp. 3381– 3388, 2009. [19] Chiou, Y.-P. and C.-H. Du, “Arbitrary-order interface conditions for slab structures and their applications in waveguide analysis,” Optics Express, vol. 18, no. 5, pp. 4088–4102, Mar. 2010. [20] Chiou, Y.-P. and C.-H. Du, “Arbitrary-order full-vectorial interface conditions and higher order finite-difference analysis of optical waveguides,” Journal of Lightwave Technology, vol. 29, no. 22, pp. 3445–3452, 2011. [21] Chiou, Y.-P. and C.-K. Shen, “Higher-order finite-difference modal method with interface conditions for the electromagnetic analysis of gratings,” Journal of Lightwave Technology, vol. 30, no. 10, pp. 1393–1398, 2012. [22] Chiou, Y.-P., Y.-C. Chiang, and H.-C. Chang, “Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,” Journal of Lightwave Technology, vol. 18, no. 2, pp. 243–251, 2000. [23] Chiou, Y.-P., Y.-C. Chiang, C.-H. Lai, C.-H. Du, and H.-C. Chang, “Finite-difference modeling of dielectric waveguides with corners and slanted facets,” Journal of Lightwave Technology, vol. 27, no. 12, pp. 2077–2086, 2009. [24] Chu, H.-S., Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Optics Letters, vol. 37, no. 21, pp. 4564–4566, Nov. 2012. [25] Dai, D. and S. He, “Analysis of characteristics of bent rib waveguides,” Journal of the Optical Society of America A, vol. 21, no. 1, pp. 113–121, Jan. 2004. [26] Dai, D., Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Optics Express, vol. 19, no. 14, pp. 12 925–12 936, Jul. 2011. 105 [27] Davis, T. A., “Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method,” ACM Transactions on Mathematical Software, vol. 30, no. 2, pp. 196–199, Jun. 2004. [28] Dionne, J. A., L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Physical Review B, vol. 73, p. 035 407, 3 Jan. 2006. [29] Du, C.-H. and Y.-P. Chiou, “Full-vectorial finite-difference scheme for the analysis of thin-layered structures,” in Advanced Photonics, Optical Society of America, 2011, p. IMC5. [30] Du, C.-H. and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photonics Technology Letters, vol. 24, no. 11, pp. 894–896, 2012. [31] Du, C.-H. and Y.-P. Chiou, “Beam propagation analysis using higher-order fullvectorial finite-difference method,” Optical and Quantum Electronics, vol. 45, no. 7, pp. 769–774, 2013. [32] Fang, J. and Z. Wu, “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 12, pp. 2216–2222, 1996. [33] Feng, N.-N., G.-R. Zhou, C. Xu, and W.-P. Huang, “Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,” Journal of Lightwave Technology, vol. 20, no. 11, pp. 1976–1980, 2002. [34] Gallot, G., S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” Journal of the Optical Society of America B, vol. 17, no. 5, pp. 851– 863, May 2000. [35] Gramotnev, D., K. Vernon, and D. Pile, “Directional coupler using gap plasmon waveguides,” Applied Physics B, vol. 93, no. 1, pp. 99–106, 2008. 106 [36] Greene, J. H. and A. Taflove, “General vector auxiliary differential equation finitedifference time-domain method for nonlinear optics,” Optics Express, vol. 14, no. 18, pp. 8305–8310, Sep. 2006. [37] Hadley, G. R., “Low-truncation-error finite difference equations for photonics simulation. i. beam propagation,” Journal of Lightwave Technology, vol. 16, no. 1, pp. 134–141, 1998. [38] Hadley, G. R., “Transparent boundary condition for beam propagation,” Optics Letters, vol. 16, no. 9, pp. 624–626, 1991. [39] Hadley, G. R., “Wide-angle beam propagation using Pade approximant operators,” Optics Letters, vol. 17, no. 20, pp. 1426–1428, Oct. 1992. [40] Hu, B., P. Sewell, J. G. Wykes, A. Vukovic, and T. M. Benson, “Fourth-order accurate sub-sampling for finite-difference analysis of surface plasmon metallic waveguides,” Microwave and Optical Technology Letters, vol. 50, no. 4, pp. 995– 1000, 2008. [41] Huang, W., C. Xu, S.-T. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” Journal of Lightwave Technology, vol. 10, no. 3, pp. 295–305, 1992. [42] Jamid, H., “Enhanced PML performance using higher order approximation,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 4, pp. 1166–1174, 2004. [43] Kakihara, K., N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Optics Express, vol. 14, no. 23, pp. 11 128–11 141, Nov. 2006. [44] Kim, C.-M. and R. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” Journal of Lightwave Technology, vol. 7, no. 10, pp. 1581–1589, 1989. 107 [45] Kim, S. and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” Journal of Lightwave Technology, vol. 14, no. 9, pp. 2085–2092, 1996. [46] Lai, C.-H., Y.-C. Hsueh, H.-W. Chen, Y. jing Huang, H. chun Chang, and C.- K. Sun, “Low-index terahertz pipe waveguides,” Optics Letters, vol. 34, no. 21, pp. 3457–3459, Nov. 2009. [47] Lai, C.-H., B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. chun Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Optics Express, vol. 18, no. 1, pp. 309–322, Jan. 2010. [48] Lalanne, P. and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” Journal of the Optical Society of America A, vol. 13, no. 4, pp. 779–784, Apr. 1996. [49] Lehoucq, R. B., D. C. Sorensen, and C. Yang, ARPACK users guide: solution of large scale eigenvalue problems by implicitly restarted arnoldi methods. 1997. [50] Li, D.-U. and H.-C. Chang, “An efficient full-vectorial finite-element modal analysis of dielectric waveguides incorporating inhomogeneous elements across dielectric discontinuities,” IEEE Journal of Quantum Electronics, vol. 36, no. 11, pp. 1251–1261, 2000. [51] Li, Q., Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Optics Letters, vol. 35, no. 19, pp. 3153–3155, Oct. 2010. [52] Little, B., S. Chu, H. Haus, J. Foresi, and J. P Laine, “Microring resonator channel dropping filters,” Journal of Lightwave Technology, vol. 15, no. 6, pp. 998–1005, 1997. [53] Liu, L., Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Optics Express, vol. 13, no. 17, pp. 6645–6650, Aug. 2005. 108 [54] Liu, P.-L. and B.-J. Li, “Semivectorial beam-propagation method for analyzing polarized modes of rib waveguides,” IEEE Journal of Quantum Electronics, vol. 28, no. 4, pp. 778–782, 1992. [55] Lou, F., Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Applied Physics Letters, vol. 100, no. 24, 241105, p. 241 105, 2012. [56] Lu, Y.-C., L. Yang, W.-P. Huang, and S. sheng Jian, “Improved full-vector finitedifference complex mode solver for optical waveguides of circular symmetry,” Journal of Lightwave Technology, vol. 26, no. 13, pp. 1868–1876, 2008. [57] Lu, Y.-J., J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science, vol. 337, no. 6093, pp. 450–453, 2012. [58] Lui, W., C.-L. Xu, T. Hirono, K. Yokoyama, and W.-P. Huang, “Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations,” Journal of Lightwave Technology, vol. 16, no. 5, pp. 910–914, 1998. [59] Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Physical Review B, vol. 48, pp. 8434–8437, 11 Sep. 1993. [60] Mendis, R. and D. Grischkowsky, “Plastic ribbon THz waveguides,” Journal of Applied Physics, vol. 88, no. 7, pp. 4449–4451, 2000. [61] Moharam, M. G. and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” Journal of the Optical Society of America, vol. 71, no. 7, pp. 811–818, Jul. 1981. [62] Noghani, M. T. and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics, vol. 8, no. 2, pp. 1155–1168, 2013. 109 [63] Noghani, M. T. and M. H. V. Samiei, “Ultrashort hybrid metal-insulator plasmonic directional coupler,” Applied Optics, vol. 52, no. 31, pp. 7498–7503, Nov. 2013. [64] Obayya, S. S. A., B. M. A. Rahman, and K. T. V. Grattan, “Full vectorial finite element modal solution of curved optical waveguides,” Laser Physics Letters, vol. 2, no. 3, p. 131, 2005. [65] Ohke, S., T. Umeda, and Y. Cho, “Optical waveguides using GaAs-AlxGa1xAs multiple quantum well,” Optics Communications, vol. 56, no. 4, pp. 235–239, 1985. [66] Ohke, S., T. Umeda, and Y. Cho, “TM-mode propagation and form birefringence in a GaAs-AlGaAs multiple quantum well optical waveguide,” Optics Communications, vol. 70, no. 2, pp. 92–96, 1989. [67] Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photonics, vol. 2, no. 8, pp. 496–500, Aug. 2008. [68] Oulton, R. F., V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature, vol. 461, no. 7264, pp. 629–632, Oct. 2009. [69] Prade, B., J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Physical Review B, vol. 44, pp. 13 556–13 572, 24 Dec. 1991. [70] Rahman, B. and B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 1, pp. 20–28, 1984. [71] Rumpf, R. C., “Simple implementation of arbitrarily shaped total-field/scatteredfield regions in finite-difference frequency-domain,” Progress In Electromagnetics Research B, vol. 36, pp. 221–248, 2012. 110 [72] Saitoh, K. and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 927–933, 2002. [73] Saitoh, K., Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Optics Express, vol. 11, no. 24, pp. 3188–3195, Dec. 2003. [74] Sarid, D., “Long-range surface-plasma waves on very thin metal films,” Physical Review Letters, vol. 47, pp. 1927–1930, 26 Dec. 1981. [75] Shibayama, J., T. Takahashi, J. Yamauchi, and H. Nakano, “A three-dimensional multistep horizontally wide-angle beam-propagation method based on the generalized douglas scheme,” IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2535–2537, 2006. [76] Stern, M., “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” IEE Proceedings-J Optoelectronics, vol. 135, no. 1, pp. 56–63, 1988. [77] Stern, M., “Rayleigh quotient solution of semivectorial field problems for optical waveguides with arbitrary index profiles,” IEE Proceedings-J Optoelectronics, vol. 138, no. 3, pp. 185–190, 1991. [78] Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method, Third Edition, 3rd ed. Artech House, Jun. 2005. [79] Vassallo, C., “Improvement of finite difference methods for step-index optical waveguides,” IEE Proceedings-J Optoelectronics, vol. 139, no. 2, pp. 137–142, 1992. [80] Veronis, G. and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2511–2521, 2007. [81] Vorst, H. van der, “Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 2, pp. 631–644, 1992. 111 [82] Wang, C.-Y., H.-H. Liu, S.-Y. Chung, C.-H. Teng, C.-P. Chen, and H.-C. Chang, “High-accuracy waveguide leaky-mode analysis using a multidomain pseudospectral frequency-domain method incorporated with stretched coordinate pml,” Journal of Lightwave Technology, vol. 31, no. 14, pp. 2347–2360, 2013. [83] Wang, J., X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmstrom, L. Wosinski, L. Thylen, and D. Dai, “Sub- m2 power splitters by using silicon hybrid plasmonic waveguides,” Optics Express, vol. 19, no. 2, pp. 838–847, Jan. 2011. [84] Wang, K. and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, no. 7015, pp. 376–379, Nov. 2004. [85] Wang, M.-Y., J. W. J. Xu, B. Wei, H.-L. Li, T. Xu, and D.-B. Ge, “FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials,” Progress In Electromagnetics Research, vol. 81, pp. 253–265, 2008. [86] Wykes, J. G., P. Sewell, A. Vukovic, and T. M. Benson, “Subsampling of fine features in finite-difference frequency-domain simulations,” Microwave and Optical Technology Letters, vol. 44, no. 1, pp. 95–101, 2005. [87] Xiang, C. and J. Wang, “Long-range hybrid plasmonic slot waveguide,” IEEE Photonics Journal, vol. 5, no. 2, pp. 4 800 311–4 800 311, 2013. [88] Xiao, J. and X. Sun, “Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system,” Optics Express, vol. 20, no. 19, pp. 21 583–21 597, Sep. 2012. [89] Xiao, J., H. Ni, and X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems,” Optics Letters, vol. 33, no. 16, pp. 1848–1850, Aug. 2008. [90] Xu, C., W.-P. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proceedings-Optoelectronics, vol. 141, no. 5, pp. 281–286, 1994. 112 [91] Yamamoto, T. and M. Koshiba, “Numerical analysis of curvature loss in optical waveguides by the finite-element method,” Journal of Lightwave Technology, vol. 11, no. 10, pp. 1579–1583, 1993. [92] Yamauchi, J., M. Sekiguchi, O. Uchiyama, J. Shibayama, and H. Nakano, “Modified finite-difference formula for the analysis of semivectorial modes in step-index optical waveguides,” IEEE Photonics Technology Letters, vol. 9, no. 7, pp. 961– 963, 1997. [93] Yamauchi, J., M. Koshihara, and H. Nakano, “Numerical analysis of a waveguidebased demultiplexer with two multiple-layer filters,” IEEE Photonics Technology Letters, vol. 17, no. 2, pp. 366–368, 2005. [94] Yamauchi, J., J. Shibayama, and H. Nakano, “Application of the generalized douglas scheme to optical waveguide analysis,” Optical and Quantum Electronics, vol. 31, no. 9-10, pp. 675–687, 1999. [95] Yang, P. and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” Journal of the Optical Society of America A, vol. 13, no. 10, pp. 2072–2085, Oct. 1996. [96] Yee, K., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, 1966. [97] Yu, C.-P. and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Optics Express, vol. 12, no. 25, pp. 6165–6177, Dec. 2004. [98] Zhang, H., Q. Guo, and W.-P. Huang, “Analysis of waveguide discontinuities by a fourth-order finite-difference reflective scheme,” Journal of Lightwave Technology, vol. 25, no. 2, pp. 556–561, 2007. [99] Zhang, J., L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Optics Letters, vol. 36, no. 12, pp. 2312–2314, Jun. 2011. 113 [100] Zhu, Z., C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Applied Physics Letters, vol. 103, no. 6, 061108, p. 061 108, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58753 | - |
| dc.description.abstract | 本研究中我們開發出數種基於高階有限差分法的光學模擬工具。波導模擬為開發主軸,然而調整後的沿平面傳播之有限差分頻域分析可以模擬更一般性的問題。我們推導出一般化結構斷面上的任意階場型微分之連續關係式,結合泰勒級數展開應用於高階有限差分法並計算數種波導結構。數值評估顯示高階有限差分法帶來更高階誤差收斂。這個現象讓我們得以在模擬問題中使用更稀疏的格點切割,降低計算
資源需求而維持模擬準確度,甚至進一步精準。我們也研發出此方法在光束傳播法及沿平面傳播之有限差分頻域分析的應用,亦顯示高階有限差分法為這些模擬方法帶來更高的數值精確度及模擬效率。而泰勒級數展開及介面連續關係的概念也被應用於彎曲波導模態分析,其中我們由嚴謹計算式出發並得以準確模擬光電元件中的劇烈彎曲,而模擬工具的開發仍然非常簡單。 我們也利用已開發的數值模擬工具研究具備表面電漿極化子現象之波導。基本結構的模擬結果與已知理論吻合,也驗證我們的模擬工具能夠有效分析此類問題。在混合電漿波導模擬中,我們提出並分析一系列垂直指向耦合元件結構的新設計,而這些結構可相容於絕緣上矽的製程。為此我們分析金屬/絕緣體/金屬(MIM)與絕緣體/金屬/絕緣體(IMI)架構。平板結構分析顯示MIM 式指向耦合器的性能較好, 並可達到次微米的耦合長度。在三維結構模擬中,MIM 式設定亦顯示其次微米耦合的特性。其中耦合長度可縮短至0.496 微米,此乃約真空波長之三分之一,且耦合後之能量損耗可低於5%。在些微降低結構緊湊度的結構中,耦合長度仍然維持次微米,但能量損耗可更進一步降至3%。藉由光束傳播法分析,我們展示MIM 式垂直指向耦合器可在0.496 微米達成耦合,也驗證了我們提出的設計可大幅縮小元件。 | zh_TW |
| dc.description.abstract | In this study, several photonic simulation tools based on higher-order finite-difference method are developed. Waveguide mode analysis is the main development, while modification to in-plane finite-difference frequency-domain
analysis allows more general device simulation. We derive generalized continuity relations of arbitrary-order field derivatives across an abrupt interface, which will be combined with Taylor series expansion and applied in higherorder finite-difference analysis of several waveguide structures. Numerical assessment shows higher error convergence order when using higher-order finite-difference scheme. It allows coarser discretization of problem and decreases computation resource demand while accuracy is still maintained or even improved. Applications in beam propagation method and in-plane finite-difference frequency-domain method are also investigated and developed, and accuracy and efficiency of these techniques are also enhanced by higher-order finite-difference scheme. The concept of Taylor series expansion and interface continuity relations are also applied in bent waveguide mode analysis, where rigorous formulation allows accurate modeling of modern devices with sharp bends and its implementation is very simple. Waveguides with surface plasmon polariton effect are investigated using developed simulation tools. Simulation results of fundamental waveguides agree with known theory and effectiveness of the tools are verified. In simulation of hybrid plasmonic waveguides, we propose and analyze a series of vertical directional couplers based on SOI-compatible hybrid plasmonic waveguides. Metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) configurations are investigated. Slab waveguide analysis shows that MIM directional couplers have better directional coupling performance with submicron coupling capability. Three-dimensional analysis also shows submicron directional coupling of MIM directional couplers. When the power loss is lower than 5%, the coupling length can be as short as 0.496 micron (about one third of the wavelength 1.55 micron). Slightly less compact design still yields sub-micron coupling length, when normalized power loss is less than 3%. By using beam propagation analysis, we demonstrate and verify a compact design that guided mode coupling along vertical direction can be achieved in 0.496 micron using our proposed MIM design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:29:09Z (GMT). No. of bitstreams: 1 ntu-103-D98941004-1.pdf: 4299602 bytes, checksum: e7826808e179693a05b816242ee8013e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要i
Abstract iii 1 Introduction 1 1.1 Interface Boundary Condition and Higher-Order Finite-Difference Guided Wave Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Plasmonic and Hybrid Plasmonic Waveguides and Directional Couplers . 4 1.3 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Contributions of the Present Work . . . . . . . . . . . . . . . . . . . . . 8 2 Higher-Order Finite-Difference Waveguide Analysis 11 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 High-Order Finite-Difference Method . . . . . . . . . . . . . . . . . . . 12 2.3 Perfectly-Matched Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Maxwell’s Equations and Vector Helmholtz Equation . . . . . . . . . . . 16 2.5 One-Dimensional Finite-Difference Waveguide Mode Analysis . . . . . . 18 2.5.1 Graded-Index Approximation and Index Averaging (IA) . . . . . 18 2.5.2 Interface Continuity Relations . . . . . . . . . . . . . . . . . . . 19 2.5.3 High-Order Finite-Difference for One-Dimensional Problem . . . 22 2.6 Two-Dimensional Full-Vectorial Finite-Difference Mode Analysis . . . . 26 2.6.1 Arbitrary-order Planar Interface Continuity Relations . . . . . . . 27 2.6.2 Arbitrary-order Cylindrical Interface Continuity Relations . . . . 30 2.6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7 Waveguide Mode with Circular Symmetry . . . . . . . . . . . . . . . . . 39 2.8 Beam Propagation Method . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.9 Two-Dimensional In-Plane Finite-Difference Frequency-Domain Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.10 Full-Vectorial Bent Waveguide Mode Analysis . . . . . . . . . . . . . . 45 3 Simulation Results: Higher-Order Finite-Difference Waveguide Analysis 51 3.1 One-Dimensional Waveguide . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 Step-Index Waveguide . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.2 Multiple-Quantum-Well Waveguide . . . . . . . . . . . . . . . . 54 3.2 Full-Vectorial Two-Dimensional Waveguide Mode Analysis . . . . . . . 58 3.2.1 Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.2 Photonic Crystal Fiber . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.3 Dual-Core Photonic Crystal Fiber Coupler . . . . . . . . . . . . . 63 3.2.4 Terahertz Pipe Waveguide . . . . . . . . . . . . . . . . . . . . . 65 3.3 Circularly Symmetric Waveguide Mode Analysis . . . . . . . . . . . . . 68 3.3.1 Step-Index Fiber: Reprise . . . . . . . . . . . . . . . . . . . . . 68 3.3.2 Terahertz Pipe Waveguide: Reprise . . . . . . . . . . . . . . . . 69 3.3.3 Index-Anti-Guided Waveguide . . . . . . . . . . . . . . . . . . . 70 3.4 Beam Propagation Method . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 In-Plane Finite-Difference Frequency-Domain Analysis . . . . . . . . . . 74 3.6 Bent Waveguide Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Simulation Results: Plasmonic and Hybrid Plasmonic Waveguide 81 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 One-Dimensional Plasmonic and Hybrid Plasmonic Waveguides . . . . . 82 4.2.1 Single Surface SPP, MIM, and IMI . . . . . . . . . . . . . . . . 82 4.2.2 Hybrid Plasmonic Waveguides and Directional Coupler Design . 87 4.3 Two Dimensional Hybrid Plasmonic Waveguides and Directional Coupler 92 5 Conclusion 101 Bibliography 103 Publications of Cheng-Han Du 115 | |
| dc.language.iso | en | |
| dc.subject | 有限差分法 | zh_TW |
| dc.subject | 混和表面電漿波導 | zh_TW |
| dc.subject | 光波導 | zh_TW |
| dc.subject | Hybrid plasmonic waveguides | en |
| dc.subject | finite-difference method | en |
| dc.subject | Optical Waveguides | en |
| dc.title | 準確有限差分導波分析及其應用 | zh_TW |
| dc.title | Accurate Finite-Difference Analysis of Guided Waves and Its Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張宏鈞(Hung-Chun Chang),黃鼎偉(Ding-Wei Huang),賴志賢(Chih-Hsien Lai),王子建(Tzyy-Jiann Wang),林晃巖(Hoang Yan Lin) | |
| dc.subject.keyword | 有限差分法,光波導,混和表面電漿波導, | zh_TW |
| dc.subject.keyword | finite-difference method,Optical Waveguides,Hybrid plasmonic waveguides, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
