請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳俊傑(Chun-Chieh Wu) | |
| dc.contributor.author | Chieh-Jen Cheng | en |
| dc.contributor.author | 鄭傑仁 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:28:22Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-05 | |
| dc.identifier.citation | Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 4476–4492. Barker, D. M., Huang, W., Guo, Y-R., Bourgeois, A. J., and Xiao, Q. N., 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results, Monthly Weather Review, 132, 897–914. Cangialosi, J. P., and J. L. Franklin, 2012: Atlantic and eastern North Pacific forecast verification. Proc. 66th Interdepartmental Hurricane Conf., Charleston, SC, OFCM. Chang, C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169–1200. Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162. ——, and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531–550. Cheng, C., and C.-C. Wu, 2018: The Role of WISHE in secondary eyewall formation. J. Atmos. Sci., 75, 3823–3841. ——, and ——, 2020: The Role of WISHE in the rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3139–3160. Chih, C.-H., and C.-C. Wu, 2020: Exploratory analysis of upper ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific. J. Climate, 33, 1031–1050. Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123. ——, and ——, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376. D’Asaro, E., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 1405–1418. DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving. Bull. Amer. Meteor. Soc., 95, 387–398. Dolling, K. P., and G. M. Barnes, 2012: The creation of a high equivalent potential temperature reservoir in tropical storm Humberto (2001) and its possible role in storm deepening. Mon. Wea. Rev., 140, 492–505. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107. Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 19–60. Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747–762. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605. ——, 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431–3456. ——, 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014–1026. Falvey, R., 2012: Summary of the 2011 western Pacific/Indian Ocean tropical cyclone season. Proc. 66th Interdepartmental Hurricane Conf., Charleston, SC, OFCM. Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 2155–2175. Frank, W. M., and E. A. Ritchie, 1999: Effects on environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061. ——, and ——, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269. Frisius, T., 2006: Surface-flux-induced tropical cyclogenesis within an axisymmetric atmospheric balanced model. Quart. J. Roy. Meteor. Soc., 132, 2603–2623. Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633–654. Green, B. W, and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 2308–2324. Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966.Mon. Wea. Rev.,104, 418–442. Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 1310–1330. Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 1022–1034. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120. ——, and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151. ——, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. Hu, C.-C., and C.-C. Wu, 2020: Ensemble sensitivity analysis of tropical cyclone intensification rate during the development stage. J. Atmos. Sci., 77, 3387–3405. Ito, K., 2016: Errors in tropical cyclone intensity forecast by RSMC Tokyo and statistical correction using environmental parameters. SOLA, 12, 247–252. Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898–918. Judt, F., and S. S. Chen, 2016: Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles. Mon. Wea. Rev., 144, 4395–4420. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The representation of cumulus convection in numerical models. Meteor. Monogr., 46, 165–177. Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the north Atlantic basin. Wea. Forecasting, 18, 1093–1108. ——, ——, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220–241. ——, and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 1374–1396. Kieu, C., V. Tallapragada, D.-L. Zhang, and Z. Moon, 2016: On the development of double warm-core structures in intense tropical cyclones. J. Atmos. Sci., 73, 4487–4506. Kleinschmidt, E., Jr., 1951: Grundlagen einer theorie der tropischen zyklonen. Arch. Meteor. Geophys. Bioklimatol., 4A, 53–72. Kowch, R., and K. Emanuel, 2015: Are special processes at work in the rapid intensification of tropical cyclones? Mon. Wea. Rev., 143, 878–882. Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun., 7, 10625. Lee, J.-D., and C.-C. Wu, 2018: The role of polygonal eyewalls in rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 75, 4175–4199. Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical cyclones. J. Atmos. Sci., 76, 3229–3245. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612. Lin, I-I, C.-C. Wu, K. A. Emanuel, I-H. Lee, C. Wu, and F. Pan, 2005: The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649. Ma, Z., J. Fei, X. Huang, and X. Cheng, 2015: A potential problem with the application of moist static energy in tropical cyclone studies. J. Atmos. Sci., 72. Marks, F., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305–323. Miyamoto, Y., and T. Takemi, 2013: Atransition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112–129. ——, and D. S. Nolan, 2018: Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations. J. Atmos. Sci., 75, 555–569. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682. Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev.,141, 1048–1060. ——, P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341–354. ——, and Vollaro D., 1989: External influences on hurricane intensity. Part I: Outflow-layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 1093–1105. ——, ——, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 2493–2509. Montgomery, M. T., N. V. Sang, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 1697–1714. ——, and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 37–66. ——, J. Persing, and R. K. Smith, 2015: Putting to rest WISHE-ful misconceptions for tropical cyclone intensification, J. Adv. Model. Earth Syst., 7, 92–109. Murthy, V. S., and Boos, W. R., 2018: Role of surface enthalpy fluxes in idealized simulations of tropical depression spinup. J. Atmos. Sci., 75, 1811–1831. Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377–3405. Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40. Peng, C.-H., and C.-C. Wu, 2020: The impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3907–3927. Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918–938. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175. Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low wavenumber structure and evolution. Mon. Wea. Rev., 137, 603–631. ——, M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wave number structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680. Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917–925. Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 1717–1738. ——, C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 4149–4173. Rogers, R. F., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44–70. ——, P. D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970–2991. ——, ——, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536–562. Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II. J. Atmos. Sci., 44, 542–561. Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697. Schwartz, M. J., J. W. Barrett, P. W. Fieguth, P. W. Rosenkranz, M. S. Spina, and D. H. Staelin, 1996: Observations of thermal and precipitation structure in a tropical cyclone by means of passive microwave imagery near 118 GHz. J. Appl. Meteor., 35, 671–678. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394. Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp. Smith, R. K., 2003: A simple model of the hurricane boundary layer. Quart. J. Roy. Meteor. Soc., 129, 1007–1028. Stern, D. P., and F. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 73–90. ——, J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 1283–1306. Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 4364–4380. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 3335–3350. Wang, H., and Y. Wang, 2014: A Numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48. Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257–278. Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153–167. Wu, L., and S. A. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61, 3065–3081. Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789–2809. Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806. Zhang, F., and K. A. Emanuel, 2016: On the role of surface fluxes and WISHE in tropical cyclone intensification. J. Atmos. Sci., 73, 2011–2019 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58738 | - |
| dc.description.abstract | 海表面熱量通量為颱風發展的重要能量來源,本研究探討了與海表面熱量通量相關之wind-induced surface heat exchange (WISHE) 機制在颱風快速增強時的角色。首先,使用實際個案梅姬颱風(2010)進行探數值模擬,包含系集模擬;另外,也採用理想化實驗模擬,以探討在不同條件之下WISHE機制的重要性。在以上各數值實驗中,於計算海表面熱量通量時進行調整,以檢驗不同程度WISHE回饋機制對於颱風強度的影響。 在梅姬颱風個案之模擬中,若針對海表面熱量通量與風速的回饋過程進行限制,將導致較弱的颱風巔峰強度、被延遲的快速增強開始時間,甚至沒有發生快速增強。在快速增強開始之前,渦漩結構較弱且對流分布較不軸對稱,在環境初始的對流可用位能被消耗後,WISHE可維持對流不穩定度,並且提供足夠海表面熱量通量,促使氣塊舉升並向上發展,使得具有較明顯WISHE之渦漩具有較強且活躍的對流,其所伴隨之非絕熱加熱將有效地使颱風次環流增強,進一步回饋於主環流,使渦漩更快增強,並進入快速增強的過程。另外,較強的WISHE促使低層相當位溫較快增加,導致原先相當位溫較低的上風切象限之邊界層也逐漸增暖並發展對流,使得颱風對流逐漸軸對稱化,並且形成渦度環,颱風將更有效率地增強。在快速增強階段,颱風中至高對流層的對流更為軸對稱化,促使颱風進入發展更快的明顯增強時期(較連續增強),並達到其巔峰強度。較強的WISHE機制將因為有較強的內核對流而產生較多的非絕熱加熱,進一步導致相對較強的次環流與非絕熱加熱,提升颱風之最大強度;同時,內核對流強度也影響颱風中心之下沉運動,進而造成颱風中心之中高層暖心結構強度及海平面中心氣壓之差異。另外,未限制WISHE回饋之所有成員皆經歷快速增強,但會因初始渦漩結構之差異,造成不同的快速增強起始時間。 理想化實驗的結果中,即使在WISHE機制較弱的條件下,仍能達到快速增強的標準,但時間明顯被延後。在渦漩較弱的時期,WISHE機制的角色較相對較式微,各實驗之間的發展並無太大差異;在渦漩達一定強度後,各實驗之颱風內核區熱量通量差異將逐漸顯著,進一步造成發展的快慢差異,並影響快速增強啟動時間以及颱風最大強度。 綜合而言,本研究顯示WISHE機制會影響颱風快速增強時間以及增強的幅度,並影響颱風在啟動快速增強的前後的發展,特別是在具有環境垂直風切的真實大氣中,更具其重要性。 | zh_TW |
| dc.description.abstract | This study examines the role of surface heat fluxes, particularly in relation to the wind-induced surface heat exchange (WISHE) mechanism, in the rapid intensification (RI) of tropical cyclones (TCs). Real case study with ensemble simulations and idealized simulations are both adopted in this study. To evaluate the role of WISHE, the surface heat fluxes from the ocean are artificially adjusted. In order to suppress the WISHE feedback, the values of surface wind speed for calculating surface heat fluxes are capped. In the real case simulations, both the thermodynamic environment and the convective-scale processes are clearly affected when capping the WISHE, leading to delayed RI and weaker peak intensity. Before RI, the vortices are relatively weak and the convection distribution is asymmetric, caused by the environmental vertical wind shear (VWS). WISHE could help the TC to overcome some effect from the downdrafts and provide the convective instability, resulting in more active convection and broader wind field. With stronger WISHE, TCs could intensify to a certain strength earlier, followed by further intensification. After the early stage, earlier increase of θe is found in the lower level in the experiments with more WISHE, which could earlier trigger the convection in the upshear quadrant. Therefore, earlier axisymmetrization of the storm vortices are found with larger upward vertical mass flux. After the onset time of RI, the convection in the higher levels then becomes axisymmetric, leading to effective vortex spinup. More WISHE leads to more diabatic heating in the inner-core region and causes relatively strong inflows and efficient spinup (more diabatic heating in the region with high inertial stability). Thus, stronger peak intensity is consequently found in the experiments with more WISHE. In addition, the downward motion in the vortex center is also more active with more WISHE, leading to stronger warm core and lower minimum sea level pressure in TC center. In addition, all ensemble members without capping the WISHE undergo RI, while the onset time of RI diverges in different experiments. Analyses show that the vortices structure, such as the distribution of convection or the wind field, could also be important issue that affects the TC evolutions before RI stage. This suggests that except for WISHE, other processes are also important and need to be considered. Moreover, similar results are found in the idealized simulations, including the delayed RI onset time and weaker TC peak intensity when capping the WISHE. Different from the real case simulations, RI could be identified in all the simulations, including the experiments with highly suppression on WISHE. In the early stage, since there is no environmental VWS and the surface wind speed is still weak, capping the WISHE does not cause significant difference among all the experiments. When TCs intensify to a certain strength, capping the WISHE causes larger difference than during the previous stage, especially the surface heat fluxes in the inner-core region, leading to different RI onset time and peak intensity. To sum up, WISHE could affect the TC evolution both in the pre-RI stage and during the RI stage, especially in the real-case framework. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:28:22Z (GMT). No. of bitstreams: 1 U0001-0302202123284900.pdf: 32336984 bytes, checksum: c807dc007da0499693c8c2dc02ed2a8c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝...........................................................................i 摘要..........................................................................ii 英文摘要.....................................................................iii 目錄...........................................................................v 圖目錄.......................................................................vii 表目錄.......................................................................xvi 第一章 前言..................................................................01 1.1 颱風預測發展現況......................................................01 1.2 颱風RI之文獻回顧.....................................................01 1.2.1 外在環境因素......................................................02 1.2.2 內核結構發展與相關機制............................................05 1.3 WISHE機制與其延伸探討.................................................07 1.4 研究動機與目的........................................................08 第二章 研究工具與方法........................................................10 2.1 大氣模式..............................................................10 2.2 實驗設計..............................................................10 2.2.1 定量調整WISHE的方法..............................................10 2.2.2 實際個案探討-梅姬颱風(2010) ......................................11 2.2.3 理想化實驗........................................................13 2.3 颱風發展過程中之的相關定義............................................13 第三章 研究結果一-梅姬颱風(2010) ............................................15 3.1 各實驗結果之概要分析..................................................15 3.2 軸對稱化觀點之熱力與動力機制探討......................................18 3.3 颱風快速增強前後深對流之發展..........................................22 3.4 颱風軸對稱化過程及垂直風切之影響......................................23 3.5 風壓關係與RMW之探討..................................................27 3.6 小結..................................................................29 第四章 研究結果二-梅姬颱風(2010)之系集模擬...................................30 4.1 系集成員之發展概況....................................................30 4.2 以軸對稱觀點分析系集成員之熱力與動力特徵..............................31 4.3 系集成員間對流及軸對稱度之差異........................................32 4.4 RI成員間以及與非RI成員之差異分析.....................................35 4.5 小結..................................................................37 第五章 研究結果三-理想化實驗.................................................38 5.1 理想化模擬成員之發展..................................................38 5.2 理想化實驗與實際個案模擬之異同........................................41 第六章 總結及未來展望........................................................43 6.1 總結..................................................................43 6.1.1 梅姬颱風實驗......................................................43 6.1.2 理想化實驗........................................................45 6.1.3 綜合討論..........................................................45 6.1.4 相關過程之延伸討論................................................46 6.2 未來工作展望..........................................................47 參考文獻......................................................................49 附錄..........................................................................61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱帶氣旋 | zh_TW |
| dc.subject | 快速增強 | zh_TW |
| dc.subject | 次環流 | zh_TW |
| dc.subject | 軸對稱化 | zh_TW |
| dc.subject | 垂直風切 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 海表面熱量通量 | zh_TW |
| dc.subject | axisymmetrization | en |
| dc.subject | tropical cyclones | en |
| dc.subject | WISHE | en |
| dc.subject | surface heat fluxes | en |
| dc.subject | rapid intensification | en |
| dc.subject | vertical wind shear | en |
| dc.subject | Typhoon | en |
| dc.subject | secondary circulation | en |
| dc.title | WISHE機制在颱風快速增強的角色 | zh_TW |
| dc.title | The Role of WISHE in the Rapid Intensification of Tropical Cyclones | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 游政谷(Cheng-Ku Yu),吳健銘(Chien-Ming Wu),林依依(I-I Lin),廖宇慶(Yu-Chieng Liou),楊舒芝(Shu-Chih Yang) | |
| dc.subject.keyword | 颱風,熱帶氣旋,快速增強,海表面熱量通量,垂直風切,軸對稱化,次環流, | zh_TW |
| dc.subject.keyword | Typhoon,tropical cyclones,WISHE,surface heat fluxes,rapid intensification,vertical wind shear,axisymmetrization,secondary circulation, | en |
| dc.relation.page | 152 | |
| dc.identifier.doi | 10.6342/NTU202100482 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-07 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0302202123284900.pdf 未授權公開取用 | 31.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
