請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58724完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊雯如 | |
| dc.contributor.author | Yi-Chen Pao | en |
| dc.contributor.author | 鮑怡臻 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:27:37Z | - |
| dc.date.available | 2017-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-15 | |
| dc.identifier.citation | 王仕賢、鄭安秀、陳文雄. 1999. 小果番茄栽培管理. 臺南區農業改良場技術專刊108:1-14.
王仕賢、王仁晃、鄭安秀、陳文雄. 2004. 小果番茄栽培管理. 行政院農業委員會臺南區農業改良場. 臺南. 行政院農業委員會. 2012. 農業統計年報. 林傳琦. 1994. 氯化鈉對水稻幼苗生長之影響. 國立臺灣大學農藝學系碩士論文. 高景輝. 2005. 植物生理分析技術. p.72-73. 五南. 臺北. 許秀惠、安寶貞. 1995.茄科蔬菜病害, p. 182-183.葉瑩編. 臺灣農家要覽農作篇(三).行政院農業委員會. 張允瓊、邱奕志、陳世銘、林連雄. 2004. 番茄嫁接癒合過程及癒合環境對苗品質影響之研究. 生機與農機論文發表會 p. 81-82. 董彩霞、周健民、范曉暉、王火焰. 2004. 不同施鈣措施對番茄果實鈣含量和鈣形態的影響. 植物營養與肥料學報 10:91-95. 鄭安秀、王仕賢、黃山內. 2001. 番茄嫁接茄子根砧防治土傳病害. 臺南區農業專訊 35:1-3. 劉依昌. 2012. 百年農業點將錄∼臺南區農業改良場小果番茄的研發與推廣. 臺南區農業專訊 79:29-33. 劉依昌、謝明憲、林棟樑、王仕賢. 2008. 有機番茄栽培技術. 臺南區農業專訊 66:1-8. 劉依昌、謝明憲、黃瑞彰、林經偉、林棟樑、王仕賢. 2009. 設施番茄養液土耕栽培技術. 臺南區農業專訊 67:7-9. 戴順發、黃祥益、林正宏、曾夢蛟、張武男. 2004. 茄子砧木嫁接番椒之親和性研究. 高雄區農業改良場研究彙報 15:13-24. 戴順發、黃祥益、林正宏、曾夢蛟、張武男. 2005. 茄子砧木對番茄嫁接植株光合作用之影響. 高雄區農業改良場研究彙報17:50-69. Abadelhafeez, A.T., H. Harssema,and K. Verkerk. 1975. Effects of air temperature, soil temperature and soil moisture on growth and development of tomato itself and grafted on its own and eggplant rootstock. Sci. Hort. 3:65-73. Abdelmageed, A. and N. Gruda. 2009. Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Europ. J. Hort. Sci. 74:16-20. Ali, I., U. Kafkafi, I. Yamaguchi, Y. Sugimoto, and S. Inanaga. 1996. Effects of low root temperature on sap flow rate, soluble carbohydrates, nitrate contents and on cytokinin and gibberellin levels in root xylem exudate of sand‐grown tomato. J. Plant Nutr. 19:619-634. Aljibury, F.K. and D. May. 1970. Irrigation schedules and production of processing tomatoes on the San Joaquin Valley West side. Calif. Agr. 24:10-11. Bailey, L.H. 1904. Cyclopedia Of American Horticulture, Vol. II, p. 543. Macmillan, London, UK. Bastías, A., M. López‐Climent, M. Valcárcel, S. Rosello, A. Gómez‐Cadenas, and J.A. Casaretto. 2011. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid‐regulated transcription factor. Physiol. Plant. 141:215-226. Beckles, D.M., N. Hong, L. Stamova, and K. Luengwilai. 2012. Biochemical factors contributing to tomato fruit sugar content: a review. Fruits 67:49-64. Behboudian, M.H. 1977a. Responses of eggplant to drought. I. Plant water balance. Scientia Hort. 7:303-310. Behboudian, M.H. 1977b. Responses of eggplant to drought. II. Gas exchange parameters. Scientia Hort. 7:311-317. Behboudian, M.H. 1977c. Water relations of cucumber, tomato, and sweet pepper. Meded. Landbouwhogesch. Wageningen 77:1-84. Beltran, E.G. and K.E. Macklin. 1962. On the chemistry of the tomato and tomato products. A review of the literature. Thomas J. Lipton, Hoboken, N.J. Bertin, N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95:439-447. Black, L.L., D.L. Wu, J.F. Wang, T. Kalb, D. Abbass, and J.H. Chen. 2003. Grafting tomatoes for production in the hot-wet season. Asian Veg. Res. Dev. Ctr. Bul. 03-551. Bletsos, F., C. Thanassoulopoulos, and D. Roupakias. 2003. Effect of grafting on growth, yield, and Verticillium wilt of eggplant. HortScience 38:183-186. Bonnemain, J.-L. 1965. Sur le transport diurne des produits d’assimilation lors de la floraison chez la tomate. C.R. Acad. Sci. Paris 260:2054-2057. Bonnemain, J.-L. 1966. Sur les modalités de la distribution des assimilates chez la tomate et sur ses mécanismes. C.R. Acad. Sci. Paris 262:1106-1109. Brown, H.D. and C.V. Price. 1934. Effect of irrigation, degree of maturity, and shading upon the yield and degree of cracking of tomatoes. Proc. Amer. Soc. Hort. Sci. 32:524-528. Bulder, H.A.M., A.P.M. Den Nijs, E.J. Speek, P.R. van Hasselt, and P.J.C. Kuiper. 1991. The effect of low root temperature on growth and lipid composition of low temperature tolerant rootstock genotypes for cucumber. J. Plant Physiol. 138:661-666. Bussières, P. 1994. Water import rate in tomato fruit: A resistance model. Ann. Bot. 73:75-82. Buta, J.G. and D.W. Spaulding. Changes in indole-3-acetic acid and abscisic acid levels during tomato (Lycopersicon esculentum Mill.) fruit development and ripening. J. Plant Growth Regulat. 13:163-166. Chookhampaeng, S., W. Pattanagul, and P. Theerakulpisut. 2008. Effects of salinity on growth, activity of antioxidant enzymes and sucrose content in tomato (Lycopersicon esculentum Mill.) at the reproductive stage. ScienceAsia 34:69-75. Clarkson, D.T. and J.B. Hanson. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31:239-298. Colla, G., Y. Roupahel, M. Cardarelli, and E. Rea. 2006. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience 41:622-627. Davies, J.N. 1966. Changes in the non‐volatile organic acids of tomato fruit during ripening. J. Sci. Food Agr. 17:396-400. Davies, J.N. and E.C. Cocking. 1965. Changes in the carbohydrates, proteins and nucleic acids during cellular development in tomato fruit locule tissue. Planta 67:242-246. Davies, J.N. and G.E. Hobson. 1981. The constituents of tomato fruit-the influence of environment, nutrition, and genotype. CRC Crit. Rev. Food Sci. Nutr. 15:205-280. Davies, J.N. and R.J. Kempton. 1975. Changes in the individual sugars of tomato fruit during ripening. J. Sci. Food Agr. 26:1103-1110. Davies, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:55-76. Davies, W.J., M.A. Bacon, D.S. Thompson, W. Sobeih, and L.G. Rodríguez. 2000. Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants' chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J. Expt. Bot. 51:1617-1626. Demarty, M., C. Morvan, and M. Thellier. 1984. Calcium and the cell wall. Plant Cell Environ. 7:441-448. De Swaef, T., K. Verbist, W. Cornelis, and K. Steppe. 2012. Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium. Plant Soil 350:237-252. Dimitrov, Z. and A. Ovtcharrova. 1995. The productivity of peppers and tomatoes in case of insufficient water supply. Proceedings of ICID special technical session on the role of advanced technologies in irrigation and drainage system 1:91-95. Domínguez, E., M.D. Fernández, J.C.L. Hernández, J.P. Parra, L. España, A. Heredia, and J. Cuartero. 2012. Tomato fruit continues growing while ripening, affecting cuticle properties and cracking. Physiol. Plant. 146:473-486. Ehret, D.L. and L.C. Ho. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. Hort. Sci. 61:361-367. Ehret, D.L., K. Usher, T. Helmer, G. Block, D. Steinke, B. Frey, T. Kuang, and M. Diarra. 2013. Tomato fruit antioxidants in relation to salinity and greenhouse climate. J. Agr. Food Chem. 61:1138-1145. Fernández-García, N., V. Martinez, A. Cerda, and M. Carvajal. 2004. Fruit quality of grafted tomato plants grown under saline conditions. J. Hort. Sci. Biotechnol. 79:995-1001. Flores, F.B., P. Sanchez-Bel, M.T. Estañ, M.M. Martinez-Rodriguez, E.Moyano, B. Morales, J.F. Campos, J.O. Garcia-Abellán, M.I. Egea, N. Fernández-Garcia, F. Romojaro, and M.C. Bolarín. 2010. The effectiveness of grafting to improve tomato fruit quality. Scientia Hort. 125:211-217. Ghanem, M.E., J. van Elteren, A. Albacete, M. Quinet, C. Martínez-Andújar, J.-M. Kinet, F. Pérez-Alfocea, and S. Lutts. 2009. Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flower organs. Funct. Plant Biol. 36:125-136. Ginoux, G. 1974. Bilan de quatre année de expérimentation sur le greffage de solanacées dans le Sud-Est. Pépiniéristes Horticultures Maraîchers 152:35-54. Govindjee, W., J.S. Dowton, D.C. Fork, and P.A. Armond. 1981. Chlorophyll a fluorescence transience as an indicator of water potential of leaves. Plant Sci. Lett. 20:191-194. Grant, G.T., E.R. Morrism, D.A. Rees, P.J.C. Smith, and D. Thom. 1973. Biological interaction between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 32:195-198. Greenspan, M.D., K.A. Shackel, and M.A. Matthews. 1994. Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant Cell Environ. 17:811-820. Guichard, S., N. Bertin, C. Leonardi, and C. Gary. 2001. Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21:385-392. Guichard, S., C. Gary, C. Leonardi, and N. Bertin. 2005. Analysis of growth and water relations of tomato fruits in relation to air vapor pressure deficit and plant fruit load. J. Plant Growth Regulat. 24:201-213. Harker, F.R. and M.A. Venis. 1991. Measurement of intracellular and extracellular free calcium in apple fruit cells using calcium-selective microelectrodes. Plant Cell Environ. 14:525-530. Harssema, H. 1977. Root temperature and growth of young tomato plants. Meded. Landbouwhogesch. Wageningen 19:52-61. Hartmann, H.T., F. Davies, and D. Kester. 2002. Hartmann and Kester's plant propagation: Principles and practices. 7th ed. Prentice Hall, Englewood Cliffs, N.J. He, Y., Z.-J. Zhu, J. Yang, X.-L. Ni, and B. Zhu. 2009. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Expt. Bot. 66:270-278. Hetherington, A. and W.J. Davis. 1998. Special issue: stomatal biology. J. Expt. Bot. 49:293-469. Hetzroni, A., A. Vana, and A. Mizrach. 2011. Biomechanical characteristics of tomato fruit peels. Postharv. Biol. Technol. 59:80-84. Hirschi, K.D. 2004. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136:2438-2442. Ho, L.C. 2003. Improving tomato fruit quality by cultivation, p. 17-29. In: K.E. Cockshull, D. Gray, G.B. Seymour, and B. Thomas (eds.). Genetic and environmental manipulation of horticultural crops. CABI Publishing, Wallingford, UK. Ho, L.C. and P. Adams. 1994. The physiological basis for high fruit yield and susceptibility to calcium deficiency in tomato and cucumber. J. Hort. Sci. 69:367-376. Ho, L.C. and J.D. Hewitt. 1986. Fruit development, p. 201-240. In: J.G. Artherton and J. Rudich (eds.). The tomato crop. Chapman and Hall, New York, N.Y. Ho, L.C. and P.J. White. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann. Bot. 95:571-581. Ho, L.C., R.I. Grange, and A.J. Picken. 1987. An analysis of the accumulation of water and dry matter in tomato fruit. Plant Cell Environ. 10:157-162. Ho, L.C., V. Sjut, and G.V. Hoad. 1983. The effect of assimilate supply in fruit growth and hormone level in tomato plants. Plant Growth Regulat. 1:155-171. Hossain, M.M. and H. Nonami. 2011. Fruit growth of tomato associated with water uptake and cell expansion. J. Agr. Technol. 7:1049-1062. Huang, J.-S. and S. Snapp. 2004a. A bioassay investigation of calcium nutrition and tomato shoulder check cracking defect. Commun. Soil Sci. Plant Anal. 35:2771-2787. Huang, J.-S. and S. Snapp. 2004b. The effect of boron, calcium, and surface moisture on shoulder check, a quality defect in fresh-market tomato. J. Amer. Soc. Hort. Sci. 129:599-607. Ioannou, N. 2001. Integrating soil solarization with grafting on resistant rootstock for management of soil-born pathogens of eggplant. J. Hort. Sci. Biotechnol. 76:396-401. Iwasaki, M. and T. Inaba. 1988. Viral wilt of cucumber plants grafted on squash rootstocks. Annu. Phytopathol. Soc. Jpn. 54:584-592. Jiang, M. and J. Zhang. 2002. Water stress‐induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up‐regulates the activities of antioxidant enzymes in maize leaves. J. Expt. Bot. 53:2401-2410. Johnson, R.W., M.A. Dixon, and D.R. Lee. 1992. Water relations of the tomato during fruit growth. Plant Cell Environ. 15:947-953. Jones, Jr., J.B. 2008. Tomato plant culture: In the field greenhouse and home garden. 2nd ed. Taylor and Francis, Boca Raton, F.L. Jones, H.G. and F. Tardieu. 1998. Modelling water relations of horticultural crops: a review. Sci. Hort. 74:21-46. Kamimura, S., H. Yoshikawa, and K. Ito. 1972. Studies on fruit cracking in tomatoes. Bul. Hort. Res. Stat. Min. Agr. For. Ser. C. No. 7. Morioka, Japan. Kawaguchi, M., A. Taji, D. Backhouse, and M. Oda. 2008. Anatomy and physiology of graftincompatibility in solanaceousplants. J. Hort. Sci. Biotechnol.83:581-588. Khalil, A.A.M. and J. Grace. 1993. Does xylem sap ABA control the stomatal behaviour of water-stressed sycamore (Acer pseudoplatanaus L.) seedlings? J. Expt. Bot. 44:1127-1134. Kirkby, E.A. and D.J. Pilbeam. 1984. Calcium as a plant nutrient. Plant Cell Environ. 7:397-405. Kojima, K. 1995. Simultaneous measurement of ABA, IAA and GAs in citrus: Role of ABA in relation to sink ability. Plant Physiol. Biochem. 29:179-185. Kojima, K., S. Kuraishi, N. Sakurai, and K. Fusao. 1993. Distribution of abscisic acid in different parts of the reproductive organs of tomato. Scientia Hort. 56:23-30. Lee, J.M., C. Kubota, S. Tsao, Z. Bie, P.H. Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Hort. 127:93-105. Legge, R.L., J.E. Thompson, J.E. Baker, and M. Lieberman. 1982. The effect of calcium on the fluidity of phase properties of microsomal membranes isolated from postclimacteric golden delicious apples. Plant Cell Physiol. 23:161-169. Leonardi, C. and F. Giuffrida. 2006. Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks.Europ.J.Hort. Sci. 71:97-101. Liebisch, F., J.F. Max, G. Heine, and W.J. Horst. 2009. Blossom‐end rot and fruit cracking of tomato grown in net‐covered greenhouses in Central Thailand can partly be corrected by calcium and boron sprays. J. Plant Nutr. Soil Sci. 172:140-150. Liu, H.-F., M. Génard, S. Guichard, and N. Bertin. 2007a. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. J. Expt. Bot. 58:3567-3580. Liu, Z.-L., Y.-L. Zhu, C.-M. Hu, G.-P. Wei, L.-F. Yang, and G.-W. Zhang. 2007b. Effects of NaCl stress on the growth, antioxidant enzyme activities and reactive oxygen metabolism of grafted eggplant. Ying Yong Sheng Tai Xue Bao 18:537-541. Lytovchenko, A., U. Sonnewald, and A.R. Fernie. 2007. The complex network of non-cellulosic carbohydrate metabolism. Curr. Opin. Plant. Biol. 10: 227-235. Magee, R.L., F. Caporaso, and A. Prakash. 2002. Inhibiting irradiation induced softening in diced tomatoes using a calcium treatment. Session 30G, Fruit & Vegetable Product: Processed Fruits & Vegetables. Annu. Meeting Food Expo-Anaheim, California. Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Møller, and P. White. 2012. Functions of macronutrients, p. 171-178. In: P. Marschner (ed.). Marschner’s mineral nutrition of higher plants.Elsevier, London, UK. Martin, P.E., J.C. Lingle, R.M. Hagan, and W.J. Flocker. 1966. Irrigation of tomatoes in a single harvest program. Calif. Agr. 6:13-14. Martínez-Ballesta, M.C., B. Muries, C. Mota-Cadenas, and M. Carvajal. 2010. Physiological aspects of rootstock-scion interactions. Scientia Hort. 127:112-118. Meyer, R.S., K.G. Karol, D.P. Little, M.H. Nee, and A. Litt. 2012. Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol. Phylogenet. Evolution 63:685-701. Mišković, A., Z. Ilin, and V. Marković. 2009.Effect of different rootstock type on quality and yield of tomatofruits. Acta Hort. 807:619-624. Mitchell, J.P., C. Shennan, and S.R. Grattan. 1991a. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 83:177-185. Mitchell, J.P., C. Shennan, S.R. Grattan, and D.M. May. 1991b. Tomato fruit yields and quality under water deficit and salinity. J. Amer. Soc. Hort. Sci. 116:215-221. Mizrahi, Y. 1982. Effect of salinity on tomato fruit ripening. Plant Physiol. 69:966-970. Moore, R. 1984a. A model for graft compatibility-incompatibility in higher plants. Amer. J. Bot. 71:752-758. Moore, R. 1984b. The role of direct cellular contact in the formation of compatibleautografts in Sedum telephoides. Ann. Bot. 54:127-133. Nakaho, K., H. Inoue, T. Takayama, and H. Miyagawa. 2004. Distribution and multiplication of Ralstonia solanacearum in tomato plants with resistance derived from different origins. J.Gen. Plant Pathol. 70:115-119. Nambara, E. and A. Marion-Poll. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165-185. Nelson, S.D., S.J. Locascio, L.H. Allen, D.W. Dickson, and D.J. Mitchell. 2002. Soil flooding and fumigant alternatives to methyl bromide in tomato and eggplant production. HortScience 37:1057-1060. Oda, M., M. Maruyama, and G. Mori. 2005. Water transfer at graft union of tomato plants grafted onto Solanum rootstocks. J. Jpn. Soc. Hort. Sci. 74:458-463. Oda, M., M. Nagata, K. Tsuji, and H. Sasaki. 1996.Effects of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. J. Jpn. Soc. Hort. Sci. 65:531-536. Oda, M., K. Okada, and H. Sasaki. 2000. Effects of transplant container and Solanum rootstocks on the incidences of overgrowth and unmarketable fruits in tomato plants planted with plug seedlings. Environ. Control Biol. 38:273-280. Olaiya, C.O. 2011. Bioregulators favourably affect the levels of vitamins and sugars in tomato fruit tissues. Veg. Crops Res. Bul. 75:71-79. Patanè, C. and S.L. Cosentino. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agr. Water Mgt. 97:131-138. Peet, M.M. 1992. Fruit cracking in tomato. HortTechnology 2:216-223. Peet, M.M. 1996. Tomato, p. 149-157. In: M.M. Peet (ed.). Sustainable practices for vegetable production in the South. Focus Publishing, Newburyport, M.A. Peet, M.M. and D. Willits. 1995. Role of excess water in tomato fruit cracking. HortScience 30:65-68. Peet, M.M., D. Willits, and R. Gardner. 1997. Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J. Expt. Bot. 48:101-111. Pina, A. and P. Errea. 2005. A review of new advances in mechanism of graft compatibility-incompatibility. Scientia Hort. 106:1-11. Pogany, M., E.F. Elstner, and B. Barna. 2003. Cytokinin gene introduction confers tobacco necrosis virus resistance and higher antioxidant levels in tobacco. Free Radic. Res. 37:15-16. Porter, J.R. and D.W. Lawlor. 1991. Plant growth: Interactions with nutrition and environment, society for experimental biology seminar. Series 43. Cambridge University Press, Cambridge, UK. Rick, C.M. 1974. High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42:493-510. Rivard, C.L. and F.J. Louws. 2008. Grafting to manage soilborne diseases in heirloom tomato production. HortScience 43:2104-2111. Rivero, R.M., J.M. Ruiz, and L. Romero. 2003. Can grafting in tomato plants strengthen resistance to thermal stress? J. Sci. Food Agr. 83:1315-1319. Rouphael, Y., M. Cardarelli, D. Schwarz, P. Franken, and G. Colla. 2012. Effects of drought on nutrient uptake and assimilation in vegetable crops, p. 171-195. In: R. Aroca (ed.). Plant responses to drought stress. Springer, Berlin, Germany. Ruan, Y.L. and J.W. Patrick. 1995. The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta 196:434-444. Rudich, J. and U. Luchinsky. 1986. Water economy, p.335-367. In: J.G. Artherton and J. Rudich (eds.). The tomato crop. Chapman and Hall, New York, N.Y. Rudich, J., E. Zamski, and Y. Regev. 1977. Genotypic variation for sensitivity to high temperature in the tomato: Pollination and fruit set. Bot. Gaz. 138:448-452. Rudich, J., E. Rendon Poblete, M.A. Stevens, and A.-I. Ambri. 1981. Use of leaf water potential to determine water stress in field-grown tomato plants. J. Amer. Soc. Hort. Sci. 106:732-736. Schwarz, D., Y. Rouphael, G. Colla, and J.H. Venema. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Hort. 127:162-171. Shalhevct, J. and B. Yaron. 1973. Effects of soil and water salinity on tomato growth. Plant Soil 39:285-292. Sharma, V. and D. Uniyal. 2003. Short note: Delayed graft incompatibility in heteroplastic interspecific graft between Tectona grandis L.f. and Tectona hamiltoniana wall after three decades. Silvae Genet. 52:24-25. Simonne, E.H. and M. Ozores-Hampton. 2010. Water management for tomato. Proc. Florida Tomato Institute 53:34-37. Smith, G.S., K.U. Klages, T.G.A. Green, and E.F. Walton. Changes in abscisic acid concentration, surface conductance, and water content of developing kiwifruit. Scientia Hort. 62:13-27. Stevens, M.A., A.A. Kader, M. Albright-Holton, and M. Algazi. 1977. Genotype variation for flavor and composition in fresh market tomatoes. J. Amer. Soc. Hort. Sci. 102:680-689. Tal, M., D. Imber, and C. Itai. 1970. Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato: I. Root effect and kinetin-like activity. Plant Physiol. 46:367-372. Tardieu, F., C. Granier, and B. Muller. 1999. Modelling leaf expansion in a fluctuating environment: are changes in specific leaf area a consequence of changes in expansion rate? New Phytologist 143:33-43. Thompson, A.J., A.C. Jackson, R.A. Parker, D.R. Morpeth, A. Burbidge, and I.B. Taylor. 2000. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol. Biol. 42:833-845. Thompson, A.J., B.J. Mulholland, A.C. Jackson, J.M. McKee, H.W. Hilton, R.C. Symonds, T. Sonneveld, A. Burbidge, P. Stevenson, and I.B. Taylor. 2007. Regulation and manipulation of ABA biosynthesis in roots. Plant Cell Environ. 30:67-78. Thompson, A.J., E.T. Thorne, A. Burbidge, A.C. Jackson, R.E. Sharp, and I.B. Taylor. 2004. Complementation of notabilis, an abscisic acid‐deficient mutant of tomato: Importance of sequence context and utility of partial complementation. Plant Cell Environ. 27:459-471. Tindall, J.A., H.A. Mills, and D.E. Radcliffe. 1990. The effect of root zone temperature on nutrient uptake of tomato. J. Plant Nutr. 13:939-956. Tsouvaltzis, P.I., A.S. Siomos, and K.C. Dogras. 2004. The effect of the two tomatoes grafting on the performance, earliness and fruit quality. Proc. Pan-Hellenic Congr. Greek Soc. Hort. Sci. 11:51-55. Turner, N.C., G.C. Wright, and K.H.M. Siddique. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 71:193-231. van den Ende, W. and R. Valluru. 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Expt. Bot. 60:9-18. van der Ploeg, A. and E. Heuvelink. 2005. Influence of sub-optimal temperature on tomato growth and yield. J. Hort. Sci. Biotechnol. 80:652-659. Wang, Y.-Q. 2011. Plant grafting and its application in biological research. Chinese Sci. Bul. 56:3511-3517. Weaver, J.E. and W.E. Bruner. 1927. Root development of vegetable crops. 1st ed. McGraw-Hill, New York, N.Y. Went, F. 1953. The effect of temperature on plant growth. Annu. Rev. Plant Physiol. 4:347-362. Wilson, J.W. 1967. The components of leaf water potential. III. Effects of tissue characteristics and relative water content on water potential. Aust. J. Biol. Sci. 20:359-367. Winsor, G.W., J.N. Davies, and D.M. Massey. 1962. Composition of tomato fruit. III. Juices from whole fruit and locules at different stages of ripeness. J. Sci. Food Agr. 13:108-115. Yin, Y.G., Y. Kobayashi, A. Sanuki, S. Kondo, N. Fukuda, H. Ezura, S. Sugaya, and C. Matsukura. 2010. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J. Exp. Bot. 61:563-574. Zhang, J. and W.J. Davies. 1990a. Changes in the concentration of ABA in the xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ. 13:277-285. Zhang, J. and W.J. Davies. 1990b. Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants? J. Expt. Bot. 41:765-772. Zhang, C., K. Tanabe, S. Wang, F. Tamura, A. Yoshida, and K. Matsumoto. 2006. The impact of cell division and cell enlargement on evolution of fruit size in Pyrus pyrifolia. Ann. Bot. 98:537-543. Zushi, K. and N. Matsuzoe. 2006. Free amino acid contents of tomato fruit grown under water and salinity stresses. Acta Hort. 724:91-96. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58724 | - |
| dc.description.abstract | 番茄(Solanum lycopersicum L.)嫁接於特定茄子根砧,可提升植株對於土壤傳播性病害之抗性及耐淹水性,然而對溫室環境栽培果實之影響仍然研究有限。本研究以商業品種‘玉女’小果番茄和‘EG203’茄砧為試驗材料,探討嫁接及乾旱對植株生長及果實品質與產量之影響,並在果實方面探討噴施氯化鈣溶液之影響。試驗材料為番茄/茄子嫁接株,並以番茄自根及實生植株為對照;乾旱處理為兩週澆灌一次,對照組每週澆灌;氯化鈣溶液之噴施自幼果可見起,每週噴施果串50 mM氯化鈣水溶液一次,每株約30 mL,對照組不噴施。嫁接對於苗期地上部生物量的影響不顯著,但嫁接苗葉片顯著較小,葉片葉綠素計讀值有上升趨勢。嫁接使番茄成株出現砧負現象,植株高度顯著較矮,成熟展開葉片也較短,且下位葉較晚脫落。果實品質和產量方面,嫁接提升果實總可溶性固形物0.6oBrix和可滴定酸0.09%,對裂果率影響不大,但使總產量下降,下降程度因果串而異。乾旱處理使番茄實生成株株高、葉長和葉片含水量下降,葉片葉綠素計讀值則顯著上升;番茄果實總可溶性固形物因乾旱處理而提升0.6o Brix,可滴定酸的反應則不顯著,此外,裂果率和產量在乾旱下均有降低趨勢。嫁接株株高、葉長、葉綠素計讀值和葉片含水量對於乾旱處理的反應不顯著,但乾旱仍會造成嫁接株的產量下降。由嫁接面以下亞甲藍染劑留滯程度較高,推測根砧莖部水分運輸速率可能較慢,使接穗遭遇輕微乾旱。噴施氯化鈣溶液可降低果實可滴定酸,也使裂果率下降並提高可售產量。同時對植株處理乾旱及噴施氯化鈣溶液,可使番茄實生株裂果率由36%下降至8%,然而對嫁接株無顯著影響。 | zh_TW |
| dc.description.abstract | Grafting tomato (Solanum lycopersicum L.) scions onto specific eggplant rootstocks enhances resistance to soil-borne diseases and tolerance of waterlogging stress of plants. However, study on the effects of grafting on fruits under greenhouse environment was limited. Commercial cherry tomato (T) cultivar ‘Jade Girl’ grafted onto ‘EG203’ eggplant (E) were subjected to be investigated for the effects of grafting and drought on plant growth and fruit quality and production. The effects of calcium chloride (CaCl2) solution spray on fruits were also studied. Plant materials used were tomato/eggplant grafted (T/E) in addition to the two controls, tomato self-rooted (T/T) and ungrafted (T) plants. Drought treatment was watered biweekly (D) relative to weekly (CK). When immature fruits were visible, a weekly 30 mL 50 mM CaCl2 spray per plant on fruiting trusses was applied, whereas control plants received none. Grafting had little effect on shoot biomass of young plants, but young T/E plants had smaller leaves with higher chlorophyll meter reading (CMR).The scion base showed overgrowth in flowered T/E plants. T/E plants also had shorter plant height and leaf length, and the lower leaves of T/E abscissed later than T/T and T.Fruit total soluble solids (TSS) and titratable acidity (TA) were increased by grafting for 0.6oBrix and 0.09%, respectively. Grafting had no significant effect on fruit cracking incidence, but it led to lower production, of which the extent of reduction differed between trusses.Drought treatment caused reduction in plant height, leaf length, and leaf relative water content, and increase in CMR of flowered tomato plants. Drought also promoted fruit TSS by 0.6o Brix, having no effect on TA; moreover, fruit cracking incidence and production were both reduced under drought. Drought treatment didn’t significantly affect plant height, leaf length, leaf CMR and relative water content of T/E plants; however, drought yet caused production reduction in T/E plants.According to higher degree of methylene blue dye stagnation below graft union, water transport rate might be slow, causing T/E scion to experience mild drought. CaCl2 spray lowered fruit TA and fruit cracking incidence, increasing marketable production.In corporation with drought treatment, CaCl2 spray reduced cracking incidence from 36% to 8%in T plants; however, fruit cracking in T/E could not be significantly reduced by the treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:27:37Z (GMT). No. of bitstreams: 1 ntu-103-R00628101-1.pdf: 2219028 bytes, checksum: fd8bf96e229b2287bd01853c9d4ea376 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝……i
摘要……iii Abstract……v 目錄……vii 圖目錄……ix 表目錄……x 附圖目次……xi 附表目次……xii 前言……1 第一章 前人研究……4 一、嫁接茄子根砧以及乾旱處理對於番茄植株及果實的影響……4 二、施鈣對於果實及裂果的影響……8 三、研究目的……10 第二章 材料與方法……11 一、試驗材料……11 二、苗期試驗─嫁接茄砧對於苗株營養生長及生理之影響……11 (一) 試驗地點及栽培方法……11 (二) 營養生長測量……12 三、2011年溫室試驗─嫁接茄砧及乾旱對番茄植株營養生長之影響……13 (一) 試驗地點及栽培方法……13 (二) 乾旱處理方法……14 (三) 營養生長測量……14 四、2012年溫室試驗─嫁接茄砧、乾旱及施鈣對番茄植株及果實之影響……15 (一) 試驗地點及栽培方法……15 (二) 乾旱處理方法……16 (三) 噴施氯化鈣水溶液處理方法……16 (四) 營養生長測量……16 (五) 果實品質和產量分析……17 五、統計分析……19 第三章 結果……20 一、營養生長……20 (一) 嫁接茄砧對番茄苗株營養生長的影響……20 (二) 嫁接茄砧及乾旱對番茄成株營養生長的影響……21 二、生殖生長……24 (一) 嫁接茄砧、乾旱及噴施氯化鈣溶液對番茄果實品質的影響……24 (二) 嫁接茄砧、乾旱及噴施氯化鈣溶液對番茄果實產量的影響……26 第四章 討論……28 一、 嫁接對番茄營養生長的影響……28 二、 嫁接茄砧對番茄果實品質和產量的影響……32 三、 乾旱對番茄植株的影響……34 四、 於果實表面噴施氯化鈣溶液對於果實的影響……37 第五章 結論……39 參考文獻……85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 果實品質 | zh_TW |
| dc.subject | 產量 | zh_TW |
| dc.subject | 總可溶性固形物 | zh_TW |
| dc.subject | 裂果 | zh_TW |
| dc.subject | 氯化鈣 | zh_TW |
| dc.subject | fruit quality | en |
| dc.subject | total soluble solids | en |
| dc.subject | fruit cracking | en |
| dc.subject | calcium chloride | en |
| dc.subject | production | en |
| dc.title | 小果番茄(Solanum lycopersicum L.)嫁接茄砧及乾旱處理對生育之影響 | zh_TW |
| dc.title | The effect of eggplant rootstock and drought treatment on the growth of grafted cherry tomato (Solanum lycopersicum L.) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李金龍,羅筱鳳,王仕賢 | |
| dc.subject.keyword | 果實品質,產量,總可溶性固形物,裂果,氯化鈣, | zh_TW |
| dc.subject.keyword | fruit quality,production,total soluble solids,fruit cracking,calcium chloride, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
