請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58711
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 貝蘇章 | |
dc.contributor.author | Yun-Chiu Lai | en |
dc.contributor.author | 賴韻曲 | zh_TW |
dc.date.accessioned | 2021-06-16T08:26:56Z | - |
dc.date.available | 2014-01-27 | |
dc.date.copyright | 2014-01-27 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-01-17 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58711 | - |
dc.description.abstract | 在這篇論文中,我們首先由Hermite-高斯微分方程式討論離散Hermite函數(DHFs),提出具有放大縮小能力的置中離散Hermite高斯函數(CDDHFs)以及位移且具有放大縮小能力的置中離散Hermite高斯函數(SDDHFs)。
同時,我們利用提出的置中離散Hermite高斯函數實現離散線性轉換,例如散線性完整轉換(DLCT)與離散Hilbert轉換;線性完整轉換(LCT)是傅立葉轉換(FT)、分數傅立葉轉換(FrFT)、菲涅耳轉換(Fresnel transform)與放大縮小運算(scaling operation)的一般式,因此線性完整轉換在訊號處理上十分具有吸引力;然而,以往的論文只討論連續取樣方式實現的DLCT,在這種連續取樣方式下,LCT固有的加成與可逆特性將無法成立;因此,我們利用提出利用CDDHFs實現離散線性完整轉換,該實現的離散線性完整轉換具有加成與可逆特性,而且不需要超取樣;更進一步,也利用提出的DLCT實現相關的解析訊號和Hilbert轉換定義,並應用於加密的單邊帶通訊。 再者,我們將DHFs延伸至一般化Hermite高斯函數,我們定義一般化Hermite高斯函數的微分方程式,並說明與standard和elegant高斯函數的關連;進一步,我們利用光學的模式轉換,將離散的一般化Hermite高斯束模式轉換至離散的一般化Laguerre和Ince高斯束模式;最後,我們推導從離散Hermite高斯束縳換至離散Laguerre高斯束的轉換係數之快速演算法,並提供特徵點偵測和影像重建等應用。 | zh_TW |
dc.description.abstract | In this dissertation, we first provide a discussion of discrete Hermite functions (DHFs) starting from the Hermite-Gaussian differential equation. The proposed center dilated discrete Hermite functions (CDDHFs) have good ability in discrete scalable Hermite expansions. Whereas, the shifted dilated discrete Hermite functions (SDDHFs) are a shifting extension version of CDDHFs.
Then, we use the developed DHFs to realize the discrete linear transform, such as the discrete linear canonical transform (DLCT) and discrete canonical Hilbert transform. The linear canonical transform (LCT) is an attractive transform because it generalizes Fourier transform (FT), fractional FT (FrFT), Fresnel transform, and scaling operation as its special cases. However, in earlier reference papers, they only discuss the sampled-continuous approach to realized DLCT. Under such sampled-continuous approach, the LCT inherent additivity and reversibility properties cannot be held. Therefore, we define a novel DLCT by means of eigen-decomposition in dilatable eigenspace based on the CDDHFs. The implemented DLCT possess additivity and reversibility properties while with no oversampling involved; meanwhile, the proposed DLCT has very good approximation to continuous LCT. Moreover, we use the proposed DLCT to realize canonical analytic signal (CAS) and canonical Hilbert transform (CHT). The proposed CAS and CHT have several practical applications, such as the scalable edge detection and secure single-sideband communication. Further, we generalize the DHFs to discrete “generalized” Hermite Gaussian functions. We provide a compact differential equation model for the generalized Hermite Gaussian functions and show the relations between standard and elegant Hermite Gaussian functions. Afterward, we extend the discrete “generalized” Hermite Gaussian mode to Laguerre and Ince Gaussian modes by using the mode conversion in optics. We also derive fast algorithm for the transformation coefficients to compute the discrete Laguerre Gaussian functions from discrete Hermite Gaussian functions. The applications of discrete Laguerre Gaussian functions in circular pattern keypoints selection and image reconstruction are also demonstrated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:26:56Z (GMT). No. of bitstreams: 1 ntu-103-D96942020-1.pdf: 10526585 bytes, checksum: 77af4f814819617286d6a2aa5ea45081 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝……………………………………………………………………………………..i 中文摘要………………………………………………………………………………..ii Abstract………………………………………………………………………………....iv Abbreviations………………………………………………………………………....vii Chapter 1 Signal Scaling by Centered Discrete Dilated Hermite Functions 1 1.1 Introduction…………………….…………………………………………….…….1 1.2 Construction and Comparison of Centered Discrete Dilated Hermite Functions....4 1.3 Discrete Scalable Hermite Expansions……………………………………….…..11 1.3.1 Signal Approximation by Estimating the Dilation Parameter…………...11 1.3.2 Discrete Signal Scaling………………………………………….…….…16 1.4 Conclusions…………………………………………………………………....….19 Chapter 2 Discrete Linear Canonical Transforms based on Dilated Hermite Functions 21 2.1 Introduction…………………….………………………………………….…….21 2.2 Preliminaries……………………………………………………………………..28 2.2.1 Special Linear Canonical Transforms and Their Effects on Wigner Distribution……………………………………………………..………..28 2.2.2 Centered Discrete Dilated Hermite Functions……………………………34 2.3 Formulation of Discrete Linear Canonical Transform…………………………..37 2.3.1 DLCT Method based on CDDHFs……………………………………….38 2.4 Numerical Examples and Comparisons………………………………………….45 2.4.1 Comparison with CM-CC-CM Method and Method II in [2.24]………...49 2.4.2 Comparison with Sampled LCT of Gaussian Function…………………..52 2.5 Additivity and Reversibility……………………………………………………..55 2.5.1 Additivity…………………………………………………………………56 2.5.2 Reversibility………………………………………………………………59 2.6 Conclusions…………………………………………………………………....….62 Chapter 3 Derivation, and Discrete Implementation for Analytic Signal of Linear Canonical Transform 63 3.1 Introduction…………………………………………………........……………...63 3.2 Preliminaries……………………………………………………………………..66 3.2.1 Linear Canonical Transform……………………………………………...66 3.2.2 Wigner Distribution Function…………………………………………….67 3.3 Linear Canonical Transform Analytic Signal and Hilbert Transform……….…...69 3.4 Discrete Implementation for Linear Canonical Transform Analytic Signal…….74 3.4.1 Example 1: Generation of Linear Canonical Transform Analytic Signal...74 3.4.2 Example 2: Recovery of Traditional Analytic Signal from Linear Canonical Transform Analytic Signal........................................................77 3.4.3 Example 3: Scalable Edge Detection by Linear Canonical Transform Analytic Signal……………..……………………………………………..79 3.5 Linear Canonical Transform Analytic Signal in Secure SSB Communication....80 3.6 Conclusions…………………………………………………………………....….82 Chapter 4 Closed Form Variable Fractional Time Delay Using FFT 85 4.1 Introduction…………………….……………………………………………….85 4.2 Fractional Time Delay and Its Closed Form in Windowing Method……………87 4.3 Experimental Results…………………………………………………………….92 4.4 Conclusions…………………………………………………………………....….96 Chapter 5 Closed Form Variable Fractional Time Delay Using FFT with Transition Band Trade-Off 99 5.1 Introduction…………………….…………………………………………...100 5.2 Closed Form Design Of Fractional Delay Filter With Transition Samples……103 5.3 Experimental Results…………………………………………...………………106 5.4 Conclusions…………………………………………………………………….110 Chapter 6 Discrete Hermite Functions with Dilation and Shifting Variation 113 6.1 Introduction…………………………………………………........……………..113 6.2 Construction of Shifted Dilated Discrete Hermite Functions (SDDHFs)……..115 6.3 Comparison of Shifted Dilated Discrete Hermite Functions with the Squeezed State Method…………………………………………………………………….119 6.4 Discussion of Time-Bandwidth Product of Shifted Dilated Discrete Hermite Functions……………..……………………………………………………….128 6.5 Applications in Signal Processing……………………………………………...131 6.5.1 Fractional Delay…………………………………………………………131 6.5.2 Signal Expansion………………………………………………………..135 6.6 Conclusions…………………………………………………………………....139 Chapter 7 Modified One-Dimensional Discrete Fourier Transforms 141 7.1 Introduction…………………………………………………………………….141 7.2 Preliminaries……………………………………………………………………144 7.2.1 Wigner Distribution Function (WDF)…………………………………..144 7.2.2 Linear Canonical Transform (LCT)…………………………………….145 7.2.3 Complex Linear Canonical Transform (CLCT)………………………...146 7.3 Modified One-Dimensional Discrete Fourier Transforms…………..…………147 7.3.1 Dilated DFT operation…………………………………………………..147 7.3.2 Sheared DFT operation………………………………………………….149 7.3.3 Partial-Rotated DFT operation………………………………………….151 7.4 Discussion of the Reversibility of the Modified Discrete Fourier Transform...154 7.5 Some Transformations implemented by Modified One-Dimensional Discrete Fourier Transform…………………..…………………………………………..158 7.5.1 Discrete Fractional Fourier Transform (DFrFT)………………………..158 7.5.2 Discrete Linear Canonical Transform (DLCT)…………………………165 7.5.3 Discrete Complex Linear Canonical Transform (DCLCT)…………….168 7.6 Conclusions………………………………………………….……………….…170 Chapter 8 Discrete Two-Dimensional Non-Separable Linear Canonical Transform by Chirp Operations 171 8.1 Introduction…………………………………………………………………….171 8.2 Matrix Decomposition for Non-Separable Linear Canonical Transform….……176 8.2.1 Matrix Decomposition when …………………………………...177 8.2.2 Matrix Decomposition when …………………………………178 8.3 Calculation and Digital Implementation………………………………………..182 8.4 Discrete Gyrator Transform and its Applications………………………………184 8.5 Conclusions…………………………………………………………………….188 Chapter 9 Generalized Eigensolutions in between Standard and Elegant Hermite Gaussian Functions 189 9.1 Introduction…………………………………………………………………….190 9.2 Analysis of Generalized Hermite Gaussian Functions………………………..194 9.2.1 Compact Expression for Generalized Hermite Gaussian Functions…...194 9.2.2 Differential Operator for Generalized Hermite Gaussian Functions…....195 9.2.3 Adjoint Eigenfunctions for Generalized Hermite Gaussian Function…..198 9.2.4 Normalization Constants for Generalized Hermite Gaussian Functions..200 9.3 Numerical Examples…………………………..………………………………..202 9.3.1 Generalized Hermite Gaussian Functions…………...………………….203 9.3.2 Generalized Hermite Gaussian Beams……………....…………………..207 9.4 Conclusions…………………………………………………………………….209 Chapter 10 Discrete Generalized Hermite Laguerre Gaussian Beams 211 10.1 Introduction……………………………………..…………………………….211 10.2 Generalized Hermite Gaussian Functions…………………………………….222 10.2.1 Continuous Generalized Hermite Gaussian Functions……………...222 10.2.2 Discrete Generalized Hermite Gaussian Functions…………………224 10.3 Discrete Generalized Gaussian Beams…………………………….………228 10.3.1 Discrete Generalized Hermite Gaussian Beams…………………….232 10.3.2 Discrete Generalized Laguerre Gaussian Beams……………………236 10.3.3 Discrete Generalized Hermite Laguerre Gaussian Beams………….239 10.4 Discrete Properties of Generalized Gaussian Beams…………………………244 10.5 Conclusions…………………………………………………………………...245 Chapter 11 Discrete Generalized Ince Gaussian Beams 247 11.1 Introduction……………………………………………………………………247 11.2 Previous Work………………………………………………………………...254 11.3 Discrete Generalized Gaussian Families……………………………………...257 11.3.1 Discrete Generalized Hermite Gaussian Beams…………………….257 11.3.2 Discrete Generalized Ince Gaussian Beams………………………...264 11.3.3 Discrete Properties of the Generalized Gaussian Families………….267 11.4 Conclusions…………………………………………………………………...270 Chapter 12 Discrete Laguerre Gaussian Transforms and Their Applications 273 12.1 Introduction……………………………………………………...……………273 12.2 Preliminaries…………………………………………………………………277 12.2.1 The Laguerre Gaussian Functions…………………………………..277 12.2.2 The Laguerre Gaussian Transform………………………………….278 12.2.3 Mode Conversion between Laguerre Gaussian Functions and separable Hermite Gaussian Functions…………..……………………………279 12.3 Transformation Coefficient Computation Method……………..…………282 12.3.1 Close-form Transformation Coefficients……………………………282 12.3.2 Fast Coefficient Computing using the Modified Hermite Transform..283 12.3.3 Fast Coefficient Computing using the Fast Fourier Transform……..285 12.4 Discrete Laguerre Gaussian Transforms……………….……………………...287 12.4.1 Discrete Hermite Gaussian Functions and Discrete Hermite Transforms………………………………………………………….287 12.4.2 Discrete Laguerre Gaussian Functions…………………….………..289 12.4.3 Discrete Laguerre Gaussian Transforms……………………………295 12.5 Simulations……………………………………………………………………296 12.5.1 High-Order Discrete Laguerre Gaussian Functions using Different Methods…………………………………………...………………….296 12.6 Image Processing Applications……………………………………………….299 12.6.1 Circular Pattern Keypoints Selection……………………………….299 12.6.2 Image Reconstruction…………………………………………...…..301 12.6.3 Video Object Detection………………………………………….….302 12.7 Conclusions………………………………………………………………….304 Chapter 13 Conclusions and Future Work 305 Reference 309 | |
dc.language.iso | en | |
dc.title | 離散線性完整轉換及其應用 | zh_TW |
dc.title | Discrete Linear Canonical Transform and Its Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 丁建均,李枝宏,馮世邁,徐忠枝,許新添 | |
dc.subject.keyword | 離散線性完整轉換,一般化的離散高斯束,分數位移,Laguerre高斯轉換,維格納旋轉矩陣, | zh_TW |
dc.subject.keyword | discrete linear canonical transform,discrete generalized Gaussian beams,fractional delay,Laguerre Gaussian transform,Wigner rotation matrix, | en |
dc.relation.page | 337 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-01-20 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 10.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。