請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58710完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鐘金 | |
| dc.contributor.author | Yi-Ling Lu | en |
| dc.contributor.author | 盧誼玲 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:26:53Z | - |
| dc.date.available | 2016-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-01-17 | |
| dc.identifier.citation | Afshari FS, Ptak K, Khaliq ZM, Grieco TM, Slater NT, McCrimmon DR, Raman IM (2004) Resurgent Na currents in four classes of neurons of the cerebellum. Journal of neurophysiology 92:2831-2843.
Afsharpour S (1985) Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. The Journal of comparative neurology 236:1-13. Aman TK, Grieco-Calub TM, Chen C, Rusconi R, Slat EA, Isom LL, Raman IM (2009) Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:2027-2042. Aman TK, Raman IM (2010) Inwardly Permeating Na Ions Generate the Voltage Dependence of Resurgent Na Current in Cerebellar Purkinje Neurons. Journal of Neuroscience 30:5629-5634. Backx PH, Yue DT, Lawrence JH, Marban E, Tomaselli GF (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257:248-251. Bannister JP, Young BA, Main MJ, Sivaprasadarao A, Wray D (1999) The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1. Pflugers Archiv : European journal of physiology 438:868-878. Bant JS, Raman IM (2010) Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons. Proceedings of the National Academy of Sciences of the United States of America 107:12357-12362. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436-1438. Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I. Sodium current experiments. The Journal of general physiology 70:549-566. Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:10277-10290. Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456:202-208. Bowie D, Mayer ML (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15:453-462. Burbidge SA, Dale TJ, Powell AJ, Whitaker WRJ, Xie XM, Romanos MA, Clare JJ (2002) Molecular cloning, distribution and functional analysis of the NA(V)1.6. Voltage-gated sodium channel from human brain. Mol Brain Res 103:80-90. Cahalan MD, Almers W (1979) Block of sodium conductance and gating current in squid giant axons poisoned with quaternary strychnine. Biophysical journal 27:57-73. Castelli L, Nigro MJ, Magistretti J (2007) Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation. Brain research 1163:44-55. Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels. Annual review of biochemistry 55:953-985. Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397-409. Chahine M, Ziane R, Vijayaragavan K, Okamura Y (2005) Regulation of Na v channels in sensory neurons. Trends in pharmacological sciences 26:496-502. Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. The Journal of general physiology 120:629-645. Chang HT, Kita H, Kitai ST (1983) The fine structure of the rat subthalamic nucleus: an electron microscopic study. The Journal of comparative neurology 221:113-123. Chen Y, Yu FH, Sharp EM, Beacham D, Scheuer T, Catterall WA (2008) Functional properties and differential neuromodulation of Na(v)1.6 channels. Molecular and cellular neurosciences 38:607-615. Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG (2005) Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS letters 579:2166-2170. DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. Journal of neurophysiology 53:530-543. Do MT, Bean BP (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39:109-120. Do MT, Bean BP (2004) Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice. Journal of neurophysiology 92:726-733. Eaholtz G, Colvin A, Leonard D, Taylor C, Catterall WA (1999) Block of brain sodium channels by peptide mimetics of the isoleucine, phenylalanine, and methionine (IFM) motif from the inactivation gate. The Journal of general physiology 113:279-294. Eaholtz G, Scheuer T, Catterall WA (1994) Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron 12:1041-1048. Eaholtz G, Zagotta WN, Catterall WA (1998) Kinetic analysis of block of open sodium channels by a peptide containing the isoleucine, phenylalanine, and methionine (IFM) motif from the inactivation gate. The Journal of general physiology 111:75-82. Enomoto A, Han JM, Hsiao CF, Chandler SH (2007) Sodium currents in mesencephalic trigeminal neurons from Nav1.6 null mice. Journal of neurophysiology 98:710-719. Fytagoridis A, Sandvik U, Astrom M, Bergenheim T, Blomstedt P (2012) Long term follow-up of deep brain stimulation of the caudal zona incerta for essential tremor. Journal of neurology, neurosurgery, and psychiatry 83:258-262. Gittis AH, du Lac S (2008) Similar properties of transient, persistent, and resurgent Na currents in GABAergic and non-GABAergic vestibular nucleus neurons. Journal of neurophysiology 99:2060-2065. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365-368. Goldin AL, Snutch T, Lubbert H, Dowsett A, Marshall J, Auld V, Downey W, Fritz LC, Lester HA, Dunn R, Catterall WA, Davidson N (1986) Messenger-Rna Coding for Only the Alpha-Subunit of the Rat-Brain Na-Channel Is Sufficient for Expression of Functional Channels in Xenopus-Oocytes. Proceedings of the National Academy of Sciences of the United States of America 83:7503-7507. Grieco TM, Afshari FS, Raman IM (2002) A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:3100-3107. Grieco TM, Raman IM (2004) Production of resurgent current in NaV1.6-null Purkinje neurons by slowing sodium channel inactivation with beta-pompilidotoxin. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:35-42. Guy HR, Seetharamulu P (1986) Molecular-Model of the Action-Potential Sodium-Channel. Proceedings of the National Academy of Sciences of the United States of America 83:508-512. Hamid NA, Mitchell RD, Mocroft P, Westby GW, Milner J, Pall H (2005) Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. Journal of neurology, neurosurgery, and psychiatry 76:409-414. Hartmann HA, Colom LV, Sutherland ML, Noebels JL (1999) Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain. Nature neuroscience 2:593-595. Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441-443. Hille B (1971) The permeability of the sodium channel to organic cations in myelinated nerve. The Journal of general physiology 58:599-619. Hille B (1972) The permeability of the sodium channel to metal cations in myelinated nerve. The Journal of general physiology 59:637-658. Hille B (1975a) Ionic selectivity of Na and K channels of nerve membranes. Membranes 3:255-323. Hille B (1975b) Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. The Journal of general physiology 66:535-560. Hille B (2001) Ion channels of excitable membranes. Sunderland, Mass.: Sinauer. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533-538. Huxley HE, Kendrew JC (1952) Extractability of the Lotmar-Picken material from dried muscle. Nature 170:882. Isom LL (2001) Sodium channel beta subunits: Anything but auxiliary. Neuroscientist 7:42-54. Isom LL, Catterall WA (1996) Na+ channel subunits and Ig domains. Nature 383:307-308. Kazarinova-Noyes K, Malhotra JD, McEwen DP, Mattei LN, Berglund EO, Ranscht B, Levinson SR, Schachner M, Shrager P, Isom LL, Xiao ZC (2001) Contactin associates with Na+ channels and increases their functional expression. The Journal of neuroscience : the official journal of the Society for Neuroscience 21:7517-7525. Keynes RD, Elinder F (1999) The screw-helical voltage gating of ion channels. Proceedings Biological sciences / The Royal Society 266:843-852. Kiss L, LoTurco J, Korn SJ (1999) Contribution of the selectivity filter to inactivation in potassium channels. Biophysical journal 76:253-263. Kuo CC, Bean BP (1994) Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Molecular pharmacology 46:716-725. Lerche H, Peter W, Fleischhauer R, Pika-Hartlaub U, Malina T, Mitrovic N, Lehmann-Horn F (1997) Role in fast inactivation of the IV/S4-S5 loop of the human muscle Na+ channel probed by cysteine mutagenesis. The Journal of physiology 505 ( Pt 2):345-352. Levesque JC, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Movement disorders : official journal of the Movement Disorder Society 20:574-584. Lewis AH, Raman IM (2011) Cross-species conservation of open-channel block by Na channel beta4 peptides reveals structural features required for resurgent Na current. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:11527-11536. Liman ER, Hess P, Weaver F, Koren G (1991) Voltage-Sensing Residues in the S4 Region of a Mammalian K+ Channel. Nature 353:752-756. Liu Y, Jurman ME, Yellen G (1996) Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16:859-867. Lodish HF (2008) Molecular cell biology. New York: W.H. Freeman. Logothetis DE, Movahedi S, Satler C, Lindpaintner K, Nadal-Ginard B (1992) Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron 8:531-540. Magistretti J, Castelli L, Forti L, D'Angelo E (2006) Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. The Journal of physiology 573:83-106. Malhotra JD, Thyagarajan V, Chen CL, Isom LL (2004) Tyrosine-phosphorylated and nonphosphorylated sodium channel beta 1 subunits are differentially localized in cardiac myocytes. Journal of Biological Chemistry 279:40748-40754. Marchand R (1987) Histogenesis of the subthalamic nucleus. Neuroscience 21:183-195. McEwen DP, Meadows LS, Chen C, Thyagarajan V, Isom LL (2004) Sodium channel beta1 subunit-mediated modulation of Nav1.2 currents and cell surface density is dependent on interactions with contactin and ankyrin. The Journal of biological chemistry 279:16044-16049. Mcphee JC, Ragsdale DS, Scheuer T, Catterall WA (1994) A Mutation in Segment Ivs6 Disrupts Fast Inactivation of Sodium-Channels. Proceedings of the National Academy of Sciences of the United States of America 91:12346-12350. McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1995) A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. The Journal of biological chemistry 270:12025-12034. McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1998) A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. Journal of Biological Chemistry 273:1121-1129. Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188-192. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121-127. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462-465. O'Leary ME, Horn R (1994) Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums. The Journal of general physiology 104:507-522. Ogata N, Ohishi Y (2002) Molecular diversity of structure and function of the voltage-gated Na+ channels. Japanese journal of pharmacology 88:365-377. Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305-310. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain research Brain research reviews 20:128-154. Patino GA, Isom LL (2010) Electrophysiology and beyond: Multiple roles of Na+ channel beta subunits in development and disease. Neuroscience letters 486:53-59. Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 17:4517-4526. Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 19:1663-1674. Raman IM, Bean BP (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophysical journal 80:729-737. Raman IM, Gustafson AE, Padgett D (2000) Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience 20:9004-9016. Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881-891. Ratcliffe CF, Westenbroek RE, Curtis R, Catterall WA (2001) Sodium channel beta 1 and beta 3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. Journal of Cell Biology 154:427-434. Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE (1999) Solution structure of the sodium channel inactivation gate. Biochemistry 38:855-861. Scheuer T, Auld VJ, Boyd S, Offord J, Dunn R, Catterall WA (1990) Functional properties of rat brain sodium channels expressed in a somatic cell line. Science 247:854-858. Schlief T, Schonherr R, Heinemann SH (1996) Modification of C-type inactivating Shaker potassium channels by chloramine-T. Pflugers Archiv : European journal of physiology 431:483-493. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32:751-767. Sheets MF, Kyle JW, Kallen RG, Hanck DA (1999) The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophysical journal 77:747-757. Smith-Maxwell CJ, Ledwell JL, Aldrich RW (1998) Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. The Journal of general physiology 111:421-439. Smith MR, Goldin AL (1997) Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophysical journal 73:1885-1895. Smith MR, Smith RD, Plummer NW, Meisler MH, Goldin AL (1998) Functional analysis of the mouse Scn8a sodium channel. The Journal of neuroscience : the official journal of the Society for Neuroscience 18:6093-6102. Sokolov S, Scheuer T, Catterall WA (2007) Gating pore current in an inherited ion channelopathy. Nature 446:76-78. Srinivasan J, Schachner M, Catterall WA (1998) Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proceedings of the National Academy of Sciences of the United States of America 95:15753-15757. Starkus JG, Kuschel L, Rayner MD, Heinemann SH (1997) Ion conduction through C-type inactivated Shaker channels. The Journal of general physiology 110:539-550. Starkus JG, Kuschel L, Rayner MD, Heinemann SH (1998) Macroscopic Na+ currents in the 'Nonconducting' Shaker potassium channel mutant W434F. The Journal of general physiology 112:85-93. Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597-603. Terlau H, Heinemann SH, Stuhmer W, Pusch M, Conti F, Imoto K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS letters 293:93-96. Tikhonov DB, Zhorov BS (2007) Sodium channels: ionic model of slow inactivation and state-dependent drug binding. Biophysical journal 93:1557-1570. Townsend C, Horn R (1997) Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. The Journal of general physiology 110:23-33. Undrovinas AI, Shander GS, Makielski JC (1995) Cytoskeleton Modulates Gating of Voltage-Dependent Sodium-Channel in Heart. Am J Physiol-Heart C 269:H203-H214. Vilin YY, Ruben PC (2001) Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell biochemistry and biophysics 35:171-190. Villarroel A, Burnashev N, Sakmann B (1995) Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophysical journal 68:866-875. Wang Z, Wong NC, Cheng Y, Kehl SJ, Fedida D (2009) Control of voltage-gated K+ channel permeability to NMDG+ by a residue at the outer pore. The Journal of general physiology 133:361-374. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992a) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proceedings of the National Academy of Sciences of the United States of America 89:10910-10914. West JW, Scheuer T, Maechler L, Catterall WA (1992b) Efficient Expression of Rat-Brain Type-Iia Na+ Channel Alpha-Subunits in a Somatic-Cell Line. Neuron 8:59-70. Wu L, Nishiyama K, Hollyfield JG, Wang Q (2002) Localization of Na(v)1.5 sodium channel protein in the mouse brain. Neuroreport 13:2547-2551. Xiao ZC, Ragsdale DS, Malhotra JD, Mattei LN, Braun PE, Schachner M, Isom LL (1999) Tenascin-R is a functional modulator of sodium channel beta subunits. Journal of Biological Chemistry 274:26511-26517. Yang N, George AL, Jr., Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113-122. Yang NB, Horn R (1995) Evidence for Voltage-Dependent S4 Movement in Sodium-Channels. Neuron 15:213-218. Yeh JZ, Narahashi T (1977) Kinetic analysis of pancuronium interaction with sodium channels in squid axon membranes. The Journal of general physiology 69:293-323. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R (2003) Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:7577-7585. Zamponi GW, French RJ (1994) Open-channel block by internally applied amines inhibits activation gate closure in batrachotoxin-activated sodium channels. Biophysical journal 67:1040-1051. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58710 | - |
| dc.description.abstract | 在神經系統的電氣訊號傳遞上,受電壓調控而開啟的鈉離子通道扮演著關鍵性的角色。一旦鈉離子通道功能受損,很容易造成神經傳訊方面的失調。當細胞膜去極化會促使鈉離子通道開啟,而後很快會進入不活化狀態。當細胞膜處於再極化時,會促使鈉離子通道由不活化態回復到休息態。此一回復過程,依據回復之分子機制之不同,可能伴隨或不伴隨有鈉電流之發生。有此等電流之發生者,即稱該電流為回返性鈉電流。有學者提出看法,認為回返性鈉電流的產生,是由某些內生性物質在鈉離子通道開啟時塞住通道的洞口而造成。然而回返性鈉電流的詳細機制仍尚未充分了解。我們選擇在游離的視丘下核神經細胞改變鈉離子電流的流向,並在胞外給予NMDG+、Cs+,或是K+等離子替代正常胞外溶液的Na離子濃度,進行全細胞箝制技術來記錄回返性鈉電流,然而我們卻發現到這些替代Na+的離子會出現於回返性鈉電流之中。另外,我們也嘗試額外給予二價離子Ca2+。發現Ca2+可依存在於胞外的離子不同,而對於回返性電流有不同的作用效果,因此綜合這兩點我們認為當在出現回返性電流時,鈉離子通道的選擇性已大部喪失。為了檢測離子選擇性喪失的結構形成的時間,我們從胞外給予150mM Na+ + 2mM Ca2+和150mM K+ + 2mM Ca2+這兩款溶液進行一系列time course的實驗,發現在這兩種胞外溶液下鈉離子通道選擇性喪失的構造出現以及完全形成的時間並無太大差異。最後我們給予四級基胺類離子並探討胞外給予之四級基胺類離子對於回返性鈉電流的作用。我們發現100μM TMA,TEA,TPrA及TBA對於短暫性與回返性Na+電流有顯著不同的抑制效果,但100μM TPentylA及10μM THexA則對兩者皆有近乎完全之抑制效果,顯示鈉離子通道在出現短暫性與回返性Na+電流時的孔洞外口構型有顯著的不同,也印證著前述改變鈉離子流向的實驗結果—兩種電流發生時鈉離子通道的選擇性構造並不相同。 | zh_TW |
| dc.description.abstract | In nervous system, voltage gated sodium channel (VGSC) has a crucial role in electrical signaling. Dysfunction of sodium channels may therefore result in serve neurological disorders. When the cell membrane is depolarized, sodium channels are activated (driven open) and then inactivated. Upon membrane repolarization, sodium channels will be recovered from the inactivation state to the resting state. There could be Na+ currents or not during the recovery process according to the molecular mechanism of the recovery. The sodium currents during recovery, if exciting, are called resurgent currents (INaR). It has been proposed that the resurgent currents are generated because the sodium channel pore is blocked by an endogenous open-channel blocker which could compete with the inactivating particle. However, the detailed mechanism underlying the genesis of resurgent currents has not been fully understood. We recorded resurgent sodium currents with whole cell patch clamp, from the dissociated subthalamic nucleus (STN) neurons, while substituting NMDG+, Cs+, or K+ for extracellular Na+ ions. We found that these substituting ions could constitute part of the resurgent currents. Addition of extracellular Ca2+ would have different effect on the resurgent currents according to the extracellular ionic species. The results indicate loss of ion selectivity of the sodium channel when resurgent current is generated. To investigate the kinetics of selectivity loss, we studied the time course of development of resurgent currents in 150mM K+ + 2mM Ca2+ and 150mM Na+ + 2mM Ca2+ both solutions, and found no difference in these two conditions. We have also explored the effect of extracellular tetra-alkylammonium ions on the resurgent sodium currents. 100μM TMA, TEA, TPrA and TBA have evidently different effects on the transient and resurgent currents, while 100μM TPentylA and 10μM THexA essentially abolish both currents, demonstrating different conformations of the external pore mouth of the sodium channel when the transient and resurgent currents are generated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:26:53Z (GMT). No. of bitstreams: 1 ntu-102-R00441003-1.pdf: 3565012 bytes, checksum: c3fd41964efebd7210a1f7e95fbb664f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 序 -------------------------------------------- I
中文摘要 --------------------------------------- II 英文摘要 --------------------------------------- III 第一章 導論 ----------------------------------- 1 1.1 鈉離子通道的生理功能 ---------------------- 1 1.2 鈉離子通道的基本構造 -----------------------1 1.2.1 電壓感受器(Voltage sensor) -------------- 2 1.2.2 選擇性過濾器(Selectivity filter) -------- 3 1.2.3 快速不活化閘門(inactivation gate)及其受體(receptor) ------------------------------------------------- 3 1.2.4 β次單位的角色 ------------------------- 4 1.3 鈉離子通道的運作機轉 ---------------------- 5 1.4 回返性鈉電流的發現以及其生理功能 ---------- 6 1.5 回返性鈉電流的分布與開啟通道抑制子(open channel blocker) --------------------------------------- 8 1.6 β4次單位與回返性鈉電流的產生 ------------- 8 1.7 回返性鈉電流的機轉 ----------------------- 11 1.8 視丘下核細胞 ----------------------------- 12 第二章 材料方法 ------------------------------ 14 2.1 游離視丘下核神經細胞之製備 --------------- 14 2.2 實驗藥品配製 ----------------------------- 15 2.3 玻璃微電極 ------------------------------- 16 2.4 加藥管製備 ------------------------------- 16 2.5 全細胞電生理記錄 ------------------------- 16 2.6 數據分析及處理 --------------------------- 17 第三章 實驗結果 ------------------------------ 19 3.1 改變鈉離子濃度梯度後離子對於回返性電流之影響 -- ------------------------------------------------ 19 3.1.1 NMDG+、Cs+、K+三種離子對於回返性電流之作用 -- ------------------------------------------------ 19 3.1.2 對於回返性電流之離子的通透優先順序 ---------- ------------------------------------------------ 20 3.1.3 Ca2+離子對於回返性電流之作用 ----------- 22 3.1.4 改變去極化時所經歷的時間長度對於Ca2+離子於回返性電流之作用 ---------------------------------------- 22 3.2 電壓開關性鈉離子通道的結構變化所需的時間 - 23 3.2.1 改變去極化電位探討對於回返性電流出現與達飽和之所需時間長度 ---------------------------------------- 23 3.2.2 置換胞外溶液探討對於回返性電流出現與達飽和之所需時間長度 ------------------------------------------- 24 3.2.3 不同胞外溶液下欲達到穩定飽和的回返性電流之形成時間常數和回返性電流falling phase衰退時間常數變化之影響 - 24 3.3 胞外給予四級基胺類離子對於電壓開關性鈉離子通道的影響 --------------------------------------------------- 25 3.3.1 四級基胺類離子對於短暫性鈉電流與回返性鈉電流之抑制效果 ------------------------------------------------ 25 3.3.2 四級基胺類離子對於開關性鈉離子通道的gating之影響 ------------------------------------------------------ 26 第四章 討論 --------------------------------------28 4.1 電壓開關性鈉離子通道的選擇性改變之證據推論 ---28 4.1.1 回返性電流之流向 -------------------------- 28 4.1.2 回返性電流之離子通透能力優劣 -------------- 28 4.1.3 胞外給予blocker觀察近胞外洞口結構 --------- 29 4.2 通道選擇性喪失與文獻相驗證 ------------------ 29 4.2.1 本來即非完全純粹由Na+離子所組成之電流 ----- 30 4.2.2 大小超出Hille最大空間上限理論的NMDG+離子之通透探討 --------------------------------------------------- 30 4.2.3 結構性的變化影響通道離子選擇性 ------------ 31 4.2.4 Raman團隊在2010年所提出的理論 ------------- 32 4.3 胞外離子變換與選擇性喪失之結構形成無關 ------ 33 4.4 回返性電流模式圖之修正 ---------------------- 33 4.5 鈉離子通道於選擇性改變時回返性電流形成之生理意義 -------------------------------------------------------- 37 圖表 --------------------------------------------- 38 參考文獻 ----------------------------------------- 65 附錄統計方法 ------------------------------------- 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 回返性鈉電流 | zh_TW |
| dc.subject | 離子依賴性 | zh_TW |
| dc.subject | resurgent currents | en |
| dc.subject | ion dependence | en |
| dc.title | 視丘下核神經元上回返性鈉通道電流之離子依賴性 | zh_TW |
| dc.title | Ion Dependence of Resurgent Currents by Voltage-Gated Sodium Channels in Subthalamic Neurons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雅晴,蔡明正 | |
| dc.subject.keyword | 回返性鈉電流,離子依賴性, | zh_TW |
| dc.subject.keyword | resurgent currents,ion dependence, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
