Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58709
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(Chang-fu Wu)
dc.contributor.authorLi-Ting Fengen
dc.contributor.author馮立婷zh_TW
dc.date.accessioned2021-06-16T08:26:51Z-
dc.date.available2018-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-01-20
dc.identifier.citationAndersen ZJ, Wahlin P, Raaschou-Nielsen O, Scheike T, Loft S. 2007. Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J Expo Sci Environ Epidemiol 17(7): 625-636.
Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Ketzel M, Scheike T, Loft S. 2008. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup Environ Med 65(7): 458-466.
Anttila P, Paatero P, tapper U. 1995. Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmos Environ 29(14): 1705-1718.
Chan CC, Chuang KJ, Shiao GM, Lin LY. 2004. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ Health Perspect 112(10): 1063-1067.
Chang SC, Lee CT. 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmos Environ 41(19): 4002-4017.
Chen BY, Chao HJ, Chan CC, Lee CT, Wu HP, Cheng TJ, et al. 2011. Effects of ambient particulate matter and fungal spores on lung function in schoolchildren. Pediatrics 127(3): e690-698.
Chen H, Teng Y, Wang J, Song L, Zuo R. 2013. Source apportionment of trace element pollution in surface sediments using positive matrix factorization combined support vector machines: application to the Jinjiang River, China. Biol Trace Elem Res 151(3): 462-470.
Cherian R, Venkataraman C, Kumar A, Sarin MM, Sudheer AK, Ramachandran S. 2010. Source identification of aerosols influencing atmospheric extinction: Integrating PMF and PSCF with emission inventories and satellite observations. JGR 115(D22).
Chuang KJ, Chan CC, Chen NT, Su TC, Lin LY. 2005. Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environ Health Perspect 113(12): 1693-1697.
Comero S, Capitani L, Gawlik BM. 2009. Positive Matrix Factorisation (PMF)-An introduction to the chemometric evaluation of environmental monitoring data using PMF. JRC scientific and Technical Reports.
Ferin J. 1994. Pulmonary retention and clearance of particles Toxicol Lett 72: 121-125.
Friend AJ, Ayoko GA, Jayaratne ER, Jamriska M, Hopke PK, Morawska L. 2011. Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. Environ Sci Pollut Res Int 19(7): 2942-2950.
Gu J, Pitz M, Schnelle-Kreis J, Diemer J, Reller A, Zimmermann R, et al. 2011. Source apportionment of ambient particles: Comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmos Environ 45(10): 1849-1857.
Gunter OberdOrster JF, Robert Gelein, Sidney C. Soderholm, Jacob Finkelstein. 1992. Role of the alveolar macrophage in lung In jury: studies with ultrafine particles. Environ Health Perspect 97: 193-199.
Han JS, Moon KJ, Lee SJ, Kim YJ, Ryu SY, Cliff SS, et al. 2006. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia. ACP 6: 211-223.
Harris SJ, Maricq MM. 2001. Signature size distributions for diesel and gasoline engine exhaust particulate matter. J Aerosol Sci 32: 749-764.
Hoek G, Schwartz JD, Groot B, Eilers P. 1997. Effects of ambient particulate matter and ozone on daily mortality in Rotterdam, The Netherlands. Arch Environ Health 52(6): 455-463.
Hong Zhuang CKC, Ming Fang, Anthony S. Wexler. 1999. Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmos Environ 33: 843-853.
Hopke PK, Lamb RE, Natusch DFS. 1980. Multielemental characterization of urban roadway dust Environ Sci Technol 14(164-172).
Hopke PK. 2000. A guide to positive matrix factorization. EPA workshop proceedings materials from the workshop on UNMIX and PMF as applied to PM25.
Ibald-Mulli A, Wichmann H-E, Kreyling W, peters A. 2002. Epidemiological Evidence on Health Effects of Ultrafine Particles. J Aerosol Med 15: 189-201.
Ibald-Mulli A, Timonen KL, Peters A, Heinrich J, Wolke G, Lanki T, et al. 2003. Effects of Particulate Air Pollution on Blood Pressure and Heart Rate in Subjects with Cardiovascular Disease: A Multicenter Approach. Environ Health Perspect 112(3): 369-377.
Ito K, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, et al. 2006. PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Expo Sci Environ Epidemiol 16(4): 300-310.
J. G. Hemann GLB, S. J. Dutton, M. P. Hannigan, J. B. Milford, S. L. Miller. 2009. Assessing positive matrix factorization model fit: a new method to estimate uncertainty and bias in factor contributions at the measurement time scale. ACP 9: 497-513.
Janneane F. Gent, Petros Koutrakis, Kathleen Belanger, Elizabeth Triche, Theodore R. Holford, Michael B. Bracken, et al. 2009. Symptoms and Medication Use in Children with Asthma and Traffic-Related sources of Fine Particle Pollution. Environ Health Perspect 117: 1168-1174.
Juntto S, Paatero P. 1994. Analysis of daily precipitation data by positive matrix factorization. Envrionmetrics 5: 127-144.
Kroll A, Gietl JK, Wiesmuller GA, Gunsel A, Wohlleben W, Schnekenburger J, et al. 2013. In vitro toxicology of ambient particulate matter: correlation of cellular effects with particle size and components. Environ Toxicol 28(2): 76-86.
L.Morawska ST, N.Bofinger, D.wainwright, D.neale. 1998. Comprehensive characterization of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants. Atmos Environ 32(14): 2467-2478.
Lall R, Ito K, Thurston GD. 2011. Distributed lag analyses of daily hospital admissions and source-apportioned fine particle air pollution. Environ Health Perspect 119(4): 455-460.
Lee E, Chan CK, Paatero P. 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33: 3201-3212.
Leitte AM, Schlink U, Herbarth O, Wiedensohler A, Pan XC, Hu M, et al. 2011. Size-segregated particle number concentrations and respiratory emergency room visits in Beijing, China. Environ Health Perspect 119(4): 508-513.
Lin CM, Kuo HW. 2013. Sex-age differences in association with particulate matter and emergency admissions for cardiovascular diseases: a hospital-based study in Taiwan. Public Health 127(9): 828-833.
McMurry PH. 2000. A review of atmospheric aerosol measurements. Atmos Environ 34: 1959-1999.
Mehta B, Venkataraman C, Bhushan M, Tripathi SN. 2009. Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos Environ 43(6): 1288-1295.
Montiel-Davalos A, Ibarra-Sanchez Mde J, Ventura-Gallegos JL, Alfaro-Moreno E, Lopez-Marure R. 2010. Oxidative stress and apoptosis are induced in human endothelial cells exposed to urban particulate matter. Toxicology in vitro : an international journal published in association with BIBRA 24(1): 135-141.
Mooibroek D, Schaap M, Weijers EP, Hoogerbrugge R. 2011. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos Environ 45(25): 4180-4191.
Morawska L, Bofinger ND, Kocis L, Nmanwoala A. 1998. Submicrometer and supermicrometer particles from diesel vehicle emissions. Environ Sci Technol 32(14): 2033-2042.
Ogulei D, Hopke PK, Wallace LA. 2006. Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air 16(3): 204-215.
Ogulei D, Hopke PK, Zhou L, Patrick Pancras J, Nair N, Ondov JM. 2006. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos Environ 40: 396-410.
Ogulei D, Hopke PK, Chalupa DC, Utell MJ. 2007a. Modeling Source Contributions to Submicron Particle Number Concentrations Measured in Rochester, New York. Aerosol Sci Technol 41(2): 179-201.
Ogulei D, Hopke PK, Ferro AR, Jaques PA. 2007b. Factor Analysis of Submicron Particle Size Distributions near a Major United States–Canada Trade Bridge. J Air Waste Manage Assoc 57: 190-203.
Paatero P, Tapper U. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data value. Environmetrics 5: 111-126.
Paatero P, Hopke PK. 2003. Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta 490(1-2): 277-289.
Pekkanen J. 2002. Particulate Air Pollution and Risk of ST-Segment Depression During Repeated Submaximal Exercise Tests Among Subjects With Coronary Heart Disease: The Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) Study. Circulation 106(8): 933-938.
Peng RD, Chang HH, Bell ML, McDermott A, Zeger SL, Samet JM, et al. 2008. Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among medicare patients. American Medical Association 299: 2173-2179.
Polissar AV, Hopke PK, Paatero P, Kaufmann YJ, Hall DK, Bodhaine BA, et al. 1999. The aerosol at Barrow, Alaska: long-term trends and source locations. Atmos Environ 33: 2441-2458.
Pope CA, 3rd, Schwartz J, Ransom MR. 1992. Daily mortality and PM10 pollution in Utah Valley. Arch Environ Health 47(3): 211-217.
Ristovski ZD, L.Morawska, N.D.Bofinger, J.Hitchins. 1998. Submicrometer and supermicrometer particulate emission from spark ignition vehicles. Environ Sci Technol 32(24): 3845-3852.
Sem GJ. 2002. Design and performance characteristics of three continuous-f low condensation particle counters: a summary. AtmRe 62: 267-294.
Stephen M.Wall WJ, Joseph L. Ondo. 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmos Environ 22(8): 1649-1656.
Stone PH, Godleski JJ. 1999. First steps toward understanding the pathophysiologic link between air pollution and cardiac mortality. Am Heart J 138(5): 804-807.
Strak M, Boogaard H, Meliefste K, Oldenwening M, Zuurbier M, Brunekreef B, et al. 2010. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med 67(2): 118-124.
Szymanski WW, Nagy A, Czitrovszky A. 2009. Optical particle spectrometry—Problems and prospects. J Quant Spectrosc Radiat Transfer 110(11): 918-929.
USEPA. 2008. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide.
Veli-Matti Kerminen LP, Michael Boy, Arkke Eskola, Kimmo Teinila, Lauri Laakso, Ari Asmi, Jukka Hienola AL, Veera Vainio, Kari Lehtinen, Markku Kulmalab. 2000. Interation between SO2 and submicron atmosperic particles. AtmRe 54: 41-57.
Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, et al. 2008. Source apportionment of particulate matter in Europe: A review of methods and results. J Aerosol Sci 39(10): 827-849.
Wang D, Tian F, Yang M, Liu C, Li YF. 2009. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environ Pollut.
Whitby KT. 1978. The physical characteristics of sulfur aerosols. Atmos Environ 12: 135-159.
Wu CF, Li YR, Kuo IC, Hsu SC, Lin LY, Su TC. 2012. Investigating the association of cardiovascular effects with personal exposure to particle components and sources. Sci Total Environ 431: 176-182.
Xie Y, Berkowitz CM. 2007. The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas. Atmos Environ 41(28): 5831-5847.
Yubero E, Carratala A, Crespo J, Nicolas J, Santacatalina M, Nava S, et al. 2011. PM10 source apportionment in the surroundings of the San Vicente del Raspeig cement plant complex in southeastern Spain. Environ Sci Pollut Res Int 18(1): 64-74.
Yue W, Stolzel M, Cyrys J, Pitz M, Heinrich J, Kreyling WG, et al. 2008. Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Sci Total Environ 398(1-3): 133-144.
Zhang LW, Chen X, Xue XD, Sun M, Han B, Li CP, et al. 2014. Long-term exposure to high particulate matter pollution and cardiovascular mortality: a 12-year cohort study in four cities in northern China. Environ Int 62: 41-47.
Zhou L, Kim E, Hopke PK, Stanier CO, Pandis S. 2004. Advanced Factor Analysis on Pittsburgh Particle Size-Distribution Data Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Sci Technol 38(sup1): 118-132.
Zhou L, Hopke PK. 2005. Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. JGR 110(D7).
Zhu Y, Hinds WC, Kim S, Sioutas C. 2002. Concentration and Size Distribution of Ultrafine Particles Near a Major Highway. J Air Waste Manage Assoc 52(9): 1032-1042.
行政院環保署. 2012. 空氣品質監測網-超級測站背景說明.
行政院環保署. 民國97年. 96及97年度北部微粒超級監測站操作品保及數據分析計畫
行政院環保署. 民國98年. 98年度北部微粒超級監測站操作品保及數據分析計畫.
林志盈 林, 黃素蓉. 2010. 2010年大臺北地區(雙北市)15歲以上居民通勤通學型態分析. 第二十屆海峽兩岸都市交通學術研討會.
林佩吟, 李崇德. 民國91年. 台北都會區黃沙時期氣膠特性.
新北市政府. 民國102年. 新北市政府歷年人口統計資料.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58709-
dc.description.abstract近幾年來,許多流行病學研究以迴歸建模探討細懸浮微粒對於健康的危害效應,並顯示大氣中的細懸浮微粒(PM2.5)對於健康有不良影響。細懸浮微粒來源複雜,即便了解細懸浮微粒對於健康的危害,仍須進一步釐清造成危害的細懸浮微粒來源,並進行控管。因此本研究結合汙染源解析之結果,與國中小學童肺功能相關之測量數值,探討特定汙染源對於肺功能之健康危害。
本研究以臺灣新莊地區2008年2月至2008年6月超級測站細懸浮微粒各粒徑數量濃度資料,利用正矩陣因子分析法,進行汙染源的推估與解析。粒徑0.01 μm至2.5 μm小時數量濃度資料,由電移動度分析儀(SMPS)以及光學儀器(PMS)測量不同粒徑範圍,並將兩台儀器資料結合後得本研究之分析資料。本研究以正矩陣因子分析法解出不同汙染源的指紋,搭配各汙染源在不同時間下之貢獻,並參考各汙染源與細懸浮微粒上物種濃度之相關性,解析出不同汙染源可能的成因以及貢獻度。
此研究中共解出5個汙染源:地區型混和汙染源、新生(fresh)汽油引擎排放源、新生(fresh)柴油引擎排放源、老化(aged)交通汙染源、傳輸型混和汙染源。地區混和型汙染源及傳輸型混和汙染源,對超級測站地區總數量濃度貢獻分別為4.20%及13.89%,日夜變化無特別趨勢,且與二次反應物硝酸鹽及硫酸鹽有中度至高度相關,兩汙染源之差異在於風向條件概率函數(CPF)顯示傳輸型混和汙染源主要來自於西方。其餘三個汙染源日夜變化趨勢皆與台灣地區交通趨勢相似,新生汽油引擎排放主要反映台灣地區汽機車使用模式,而新生柴油引擎汙染源則反映新莊地區大型車輛(如公車)的尖峰與離峰時段差異。交通相關之汙染源對於新莊地區總貢獻約占80%以上,顯示交通汙染源於當地空氣品質之重要性。
汙染源解析各汙染源每小時貢獻值,計算其日平均後,以混合效果模式(Mixed-effects model)分析單一與多污染源之汙染源,對於當地五所國中小學2008年2月至6月肺功能數值FVC、FEV1、FEF25%、FEF50%、FEF75%、FEF25-75%之影響。地區型汙染源與新生汽油引擎排放源為地區型汙染源,因此不列入肺功能資料分析。
健康資料分析結果發現,傳輸型混和汙染源在1天延遲時會造成FVC數值下降0.00008 (升),在2天延遲時會造成FEF25%及FEF50%各下降0.00034 (升/秒)以及0.00023 (升/秒)。除了與先前研究結果相呼應,更找出細懸浮微粒數量濃度對於其餘肺功能的不良影響。當考慮到多污染物共同效應時,傳輸型混和汙染源在1天及2天延遲時會造成FVC數值下降0.00013 (升)及 0.00016 (升),並造成FEV1數值下降0.00010 (升)及0.00016 (升)。
本研究突破傳統對於細懸浮微粒健康效應研究之限制,除了區分特定粒徑之來源,更以汙染源解析結果取代細懸浮微粒總濃度分析健康效應。此研究方式可探討特定汙染源對於肺功能之危害程度,亦可利用汙染源之粒徑分布資訊,間接推估不同粒徑對於肺功能危害之可能效應。
zh_TW
dc.description.abstractEpidemiological studies have shown that particulate matter (PM) was associated with adverse health, especially for those with diameter ≤ 2.5μm. Previous studies have utilized the total concentration of PM2.5 to quantify the health effect of fine particles by using the regression model. The sources of PM2.5 are complicated. Although understanding the health effect of fine particle, it still needs to clarify the source of particles. Therefore, this study combined both results of source apportionment and lung function measurements of schoolchildren to investigate the relation between sources of PM2.5 and lung function indices.
Number concentration of size-segregated PM in Xinzhuang area in Taiwan from 2008/06 to 2008/08 was utilized in this study. Hourly number concentration data measured by SMPS and PMS of each size bin from 0.01 μm to 2.5 μm were analyzed by positive matrix factorization (PMF). The size distribution of source profile and time series trend of each source from PMF output, as well as the correlation between source contribution and PM species were utilized to identify sources.
In this study, five sources were identified and and they were local mix (Mix 1), fresh gasoline emission (Local gasoline), fresh diesel emission (Fresh diesel), aged vehicle emission (Aged vehicle) and transported mix (Mix 2) sources. Local mix and transported mix contributed 4.20% and 13.89% of total number concentration of PM2.5. Diurnal pattern of two mix sources did not show apparent time trend as traffic. Contribution of mix sources had moderate to high correlation with secondary species. The conditional probability function (CPF) showed that the direction of transported sources were mainly from west. Other three sources were related to traffic because their diurnal patterns were similar with the traffic trend in Taiwan. Gasoline emission reflected the usage of motor vehicles; diesel emission reflected the rush hour and off-peak times of large cars such as buses. Traffic related sources were estimated to contribute more than 80% to the PM2.5 number concentration in Xinzhuang District.
Hourly source contributions were calculated into daily mean. Mixed-effects model was used to quantify the effects of single or multiple sources to lung function FVC, FEV1, FEF25%, FEF50%, FEF75% and FEF25-75% of schoolchildren in Xinzhuang District. Local mix and fresh gasoline emissions were the local sources which were not included in the mixed-effects model analysis.
Results showed that increase of transported mix with 1-day-lag was significantly associated with 0.00008 (L) decreases of FVC; increase of transported mix with 2-day-lag was also associated with 0.00034 (L/s) decreases of FEF25% and 0.00023 (L/s) decreases of FEF50% in single-pollutant model. Considering the co-pollutants effect, increases of transported mix with 1- and 2-day-lag was significantly associated with the 0.00013 (L), 0.00016 (L) decreases of FVC; increases of transported mix with 1- and 2-day-lag was significantly associated with the 0.00010 (L) and 0.00016 (L) decreases of FEV1.
This study overcame some limitation of traditional health effect study. Using source apportionment results in health data analysis can assist in quantifying the effect of different sources to lung function, and understanding the lung function effect of particulate matter with different sizes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:26:51Z (GMT). No. of bitstreams: 1
ntu-103-R00844001-1.pdf: 1882483 bytes, checksum: fef0265246e2b22080586a2a383ceb71 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract V
Table of Contents VII
List of Abbreviations and Acronyms IX
List of Tables X
List of Figures XI
Chapter 1. Introduction 1
1.1 Atmospheric particles and health effect 1
1.1.1 Causes of atmospheric particle 1
1.1.2 Health effect of particles 4
1.2 Source apportionment 6
1.2.1 Receptor model 6
1.2.2 Positive matrix factorization (PMF) 8
1.3 Health data analysis 10
1.4 Source-specific health analysis 12
Chapter 2. Method 13
2.1 Study design 13
2.2 Data collection and structure 15
2.2.1 Xinzhuang District 15
2.2.2 Environmental monitoring data for source apportionment 17
2.2.3 Health measurement data 20
2.3 Matching of source apportionment and health data 23
2.4 Modeling- Source apportionment 24
2.4.1 Data preprocessing 24
2.4.2 PMF model running 27
2.4.3 Information for source identification 35
2.5 Modeling- Health data analysis 40
Chapter 3. Results and discussion 43
3.1 Data QAQC 43
3.2 Summary statistics 47
3.2.1 Summary statistics of environmental monitoring data 47
3.2.2 Summary statistics of health data 51
3.3 PMF processing 56
3.3.1 Analyze input data 56
3.3.2 Base model run and adjustments 56
3.3.3 Performance of bootstrapping model and Fpeak model 58
3.4 Source identification 59
3.5 Results of health data analysis 70
3.6 Discussion 74
Chapter 4. Conclusion and recommendation 80
References 81
Appendix A. Introduction of source model 88
Appendix B. Introduction of SMPS and PMS 91
Appendix C. Sampling dates and stages of health data 96
Appendix D. Comparison table of Supersite and health data 97
Appendix E. Conversion of bound and midpoint 101
Appendix F. Uncertainty equation in PMF 103
Appendix G. Theoretical Q of PMF 104
Appendix H. Summary statistics of Supersite data 106
Appendix I. Conversion of number to volume 115
Appendix J. Summary statistics of health data 116
Appendix K. Information of PMF modeling fit 119
Appendix L. Other information of Sources 125
Appendix M. Health data analysis of UN 128
Appendix N. Correlation between sizes and species 130
dc.language.isoen
dc.subject汙染源解析zh_TW
dc.subject粒徑分布zh_TW
dc.subject細懸浮微粒zh_TW
dc.subject肺功能zh_TW
dc.subjectsource apportionmenten
dc.subjectfine particleen
dc.subjectsize distributionen
dc.subjectlung functionen
dc.title以汙染源解析結果探討細懸浮微粒之數量濃度對於新莊地區學童肺功能影響zh_TW
dc.titleSource Apportionment of PM2.5 Number Concentration and Its Association with Lung Function of Schoolchildren in Xinzhuang Districten
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee郭育良(Yue-Liang Guo),蔡詩偉(Shih-Wei Tsai)
dc.subject.keyword汙染源解析,細懸浮微粒,粒徑分布,肺功能,zh_TW
dc.subject.keywordsource apportionment,fine particle,size distribution,lung function,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2014-01-20
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved