Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58686
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorYi-Chia Luoen
dc.contributor.author羅苡嘉zh_TW
dc.date.accessioned2021-06-16T08:25:42Z-
dc.date.available2019-03-18
dc.date.copyright2014-03-18
dc.date.issued2014
dc.date.submitted2014-01-21
dc.identifier.citation(1) Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J., J. Power Sources 2007, 165 (2), 739.
(2) Orimo, S.-i.; Nakamori, Y.; Eliseo, J. R.; Zuettel, A.; Jensen, C. M., Chem. Rev. 2007, 107 (10), 4111.
(3) Patel, N.; Fernandes, R.; Miotello, A., J. Catal. 2010, 271 (2), 315.
(4) Ahmed, S.; Krumpelt, M., Int. J. Hydrogen Energy 2001, 26 (4), 291.
(5) Murray, L. J.; Dinca, M.; Long, J. R., Chem. Soc. Rev. 2009, 38 (5), 1294.
(6) Sanyal, U.; Demirci, U. B.; Jagirdar, B. R.; Miele, P., Chemsuschem 2011, 4 (12), 1731.
(7) Jiang, H.-L.; Xu, Q., Catal. Today 2011, 170 (1), 56.
(8) Chou, C.-C.; Lee, D.-J.; Chen, B.-H., Int. J. Hydrogen Energy 2012, 37 (20), 15681.
(9) Demirci, U. B.; Miele, P., J. Power Sources 2010, 195 (13), 4030.
(10) Liu, C.-H.; Wu, Y.-C.; Chou, C.-C.; Chen, B.-H.; Hsueh, C.-L.; Ku, J.-R.; Tsau, F., Int. J. Hydrogen Energy 2012, 37 (3), 2950.
(11) Yan, J.-M.; Zhang, X.-B.; Shioyama, H.; Xu, Q., J. Power Sources 2010, 195 (4), 1091.
(12) Yan, J.-M.; Zhang, X.-B.; Akita, T.; Haruta, M.; Xu, Q., J. Am. Chem. Soc. 2010, 132 (15), 5326.
(13) Chandra, M.; Xu, Q., J. Power Sources 2007, 168 (1), 135.
(14) Jiang, H.-L.; Singh, S. K.; Yan, J.-M.; Zhang, X.-B.; Xu, Q., Chemsuschem 2010, 3 (5), 541.
(15) Patel, N.; Miotello, A.; Bello, V., Appl. Catal. B: Environ. 2011, 103 (1–2), 31.
(16) Patel, N.; Guella, G.; Kale, A.; Miotello, A.; Patton, B.; Zanchetta, C.; Mirenghi, L.; Rotolo, P., Appl. Catal. A - Gen. 2007, 323, 18.
(17) Wong, S. T.; Lee, J. F.; Chen, J. M.; Mou, C. Y., J. Mol. Catal. A - Chem. 2001, 165 (1-2), 159.
(18) Arzac, G. M.; Hufschmidt, D.; Jimenez De Haro, M. C.; Fernandez, A.; Sarmiento, B.; Jimenez, M. A.; Jimenez, M. M., Int. J. Hydrogen Energy 2012, 37 (19), 14373.
(19) Wu, Z.; Ge, S., Catal. Commun. 2011, 13 (1), 40.
(20) Fernandez Barquin, L.; Yedra, A.; Kaul, S. N.; Fdez-Gubieda, M. L.; Mosselmans, J. F. W.; Pankhurst, Q. A., J. Non-Cryst. Solids 2007, 353 (8–10), 733.
(21) Patel, N.; Fernandes, R.; Edla, R.; Lihitkar, P. B.; Kothari, D. C.; Miotello, A., Catal. Commun. 2012, 23, 39.
(22) Lim, S.; Li, N.; Fang, F.; Pinault, M.; Zoican, C.; Wang, C.; Fadel, T.; Pfefferle, L. D.; Haller, G. L., J. Phys. Chem. C 2008, 112 (32), 12442.
(23) Varisli, D.; Kaykac, N. G., Appl. Catal. B - Environ. 2012, 127, 389.
(24) Xu, Q.; Chandra, M., J. Power Sources 2006, 163 (1), 364.
(25) Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C., Langmuir 1993, 9 (1), 162.
(26) Chandra, M.; Xu, Q., J. Power Sources 2006, 159 (2), 855.
(27) Lee, C. H.; Lang, J.; Yen, C. W.; Shih, P. C.; Lin, T. S.; Mou, C. Y., J. Phys. Chem. B 2005, 109 (25), 12277.
(28) Shih, P. C.; Wang, J. H.; Mou, C. Y., Catal. Today 2004, 93-5, 365.
(29) Liu, Y.; Zhang, W. Z.; Pinnavaia, T. J., J. Am. Chem. Soc. 2000, 122 (36), 8791.
(30) Demirci, U. B.; Miele, P., Phys. Chem. Chem. Phys. 2010, 12 (44), 14651.
(31) Rakap, M.; Ozkar, S., Catal. Today 2012, 183 (1), 17.
(32) Fernandes, R.; Patel, N.; Miotello, A.; Jaiswal, R.; Kothari, D. C., Int. J. Hydrogen Energy 2012, 37 (3), 2397.
(33) Fernandes, R.; Patel, N.; Miotello, A.; Jaiswal, R.; Kothari, D. C., Int. J. Hydrogen Energy 2011, 36 (21), 13379.
(34) Arcon, I.; Tusar, N. N.; Ristic, A.; Kodre, A.; Kaucic, V., Phys. Scr. 2005, T115, 810.
(35) Farges, F.; Brown, G. E.; Petit, P. E.; Munoz, M., Geochim. Cosmochim. Acta 2001, 65 (10), 1665.
(36) Robinson, W. T.; Ibers, J. A., Inorg. Chem. 1967, 6 (6), 1208.
(37) Akdim, O.; Demirci, U. B.; Miele, P., Int. J. Hydrogen Energy 2009, 34 (11), 4780.
(38) Arzac, G. M.; Rojas, T. C.; Fernandez, A., Chemcatchem 2011, 3 (8), 1305.
(39) Ozerova, A. M.; Bulavchenko, O. A.; Komova, O. V.; Netskina, O. V.; Zaikovskii, V. I.; Odegova, G. V.; Simagina, V. I., Kinet. Catal. 2012, 53 (4), 511.
(40) Krishnan, P.; Advani, S. G.; Prasad, A. K., Int. J. Hydrogen Energy 2008, 33 (23), 7095.
(41) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114 (27), 10834.
(42) Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J., Chem. Mater. 2000, 13 (2), 308.
(43) Lee, C.-K.; Liu, S.-S.; Juang, L.-C.; Wang, C.-C.; Lin, K.-S.; Lyu, M.-D., J. Hazard. Mater. 2007, 147 (3), 997.
(44) Chi, Y. S.; Lin, H. P.; Mou, C. Y., Appl. Catal., A 2005, 284 (1-2), 199.
(45) Chao, M. C.; Lin, H. P.; Mou, C. Y.; Cheng, B. W.; Cheng, C. F., Catal. Today 2004, 97 (1), 81.
(46) Gunduz, S.; Dogu, T., Ind Eng Chem Res 2012, 51 (26), 8796.
(47) Garcia Blanco, A. A.; Gabriela Amaya, M.; Roca Jalil, M. E.; Nazzarro, M.; Oliva, M. I.; Sapag, K., Top. Catal. 2011, 54 (1-4), 190.
(48) Lim, S.; Ciuparu, D.; Pak, C.; Dobek, F.; Chen, Y.; Harding, D.; Pfefferle, L.; Haller, G., J. Phys. Chem. B 2003, 107 (40), 11048.
(49) Chen, Y.; Ciuparu, D.; Yang, Y. H.; Lim, S.; Wang, C.; Haller, G. L.; Pfefferle, L. D., Nanotechnology 2005, 16 (7), S476.
(50) An, K. H.; Lee, Y. H., NANO: Brief Reports and Reviews 2006, 1 (2), 115.
(51) Nugraha, A. R. T.; Saito, R.; Sato, K.; Araujo, P. T.; Jorio, A.; Dresselhaus, M. S., Appl. Phys. Lett. 2010, 97 (9), 091905.
(52) Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y., Synth. Met. 1999, 103 (1-3), 2555.
(53) Iijima, S., Nature 1991, 354 (6348), 56.
(54) Joseyacaman, M.; Mikiyoshida, M.; Rendon, L.; Santiesteban, J. G., Appl. Phys. Lett. 1993, 62 (6), 657.
(55) Chen, Y.; Wang, B.; Li, L. J.; Yang, Y. H.; Ciuparu, D.; Lim, S. Y.; Haller, G. L.; Pfefferle, L. D., Carbon 2007, 45 (11), 2217.
(56) Ciuparu, D.; Lim, S. Y.; Chen, Y.; Harding, D.; Haller, G. L.; Pfefferie, L., Abstr Pap Am Chem S 2003, 226, U404.
(57) Amama, P. B.; Lim, S.; Ciuparu, D.; Yang, Y. H.; Pfefferle, L.; Haller, G. L., J. Phys. Chem. B 2005, 109 (7), 2645.
(58) Cheng, G.; Guo, T., J. Phys. Chem. B 2002, 106 (23), 5833.
(59) Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F., Chem. Phys. Lett. 1999, 315 (1–2), 25.
(60) Banerjee, S.; Naha, S.; Puri, I. K., Appl. Phys. Lett. 2008, 92 (23), 233121.
(61) Chen, P.; Zhang, H. B.; Lin, G. D.; Hong, Q.; Tsai, K. R., Carbon 1997, 35 (10-11), 1495.
(62) Oliveira, H. A.; Franceschini, D. F.; Passos, F. B., J Brazil Chem Soc 2012, 23 (5), 868.
(63) Kato, Y.; Niidome, Y.; Nakashima, N., Angew Chem Int Edit 2009, 48 (30), 5435.
(64) Ghosh, S.; Bachilo, S. M.; Weisman, R. B., Nat Nanotechnol 2010, 5 (6), 443.
(65) Jorio, A.; Pimenta, M. A.; Souza, A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., New Journal of Physics 2003, 5, 139.1.
(66) Bassil, A.; Puech, P.; Landa, G.; Bacsa, W.; Barrau, S.; Demont, P.; Lacabanne, C.; Perez, E.; Bacsa, R.; Flahaut, E.; Peigney, A.; Laurent, C., J. Appl. Phys. 2005, 97 (3).
(67) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B., Science 2002, 298 (5602), 2361.
(68) Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S., Phys. Rev. Lett. 2001, 86 (6), 1118.
(69) Wang, H.; Wei, L.; Ren, F.; Wang, Q.; Pfefferle, L. D.; Haller, G. L.; Chen, Y., Acs Nano 2012.
(70) Jozwiak, W. K.; Szubiakiewicz, E.; Goralski, J.; Klonkowski, A.; Paryjczak, T., Kinet. Catal. 2004, 45 (2), 247.
(71) Weisman, R. B.; Bachilo, S. M., Nano Lett. 2003, 3 (9), 1235.
(72) Strano, M. S.; Doorn, S. K.; Haroz, E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R. E., Nano Lett. 2003, 3 (8), 1091.
(73) Ahmed, S.; Shalabi, M. A., Abstr Pap Am Chem S 2000, 220, U394.
(74) He, M.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Rikkinen, E.; Zhu, Z.; Sainio, J.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.; Niemela, M.; Krause, A. O. I., Chem. Commun. 2011, 47 (4), 1219.
(75) Wang, H.; Wei, L.; Ren, F.; Wang, Q.; Pfefferle, L. D.; Haller, G. L.; Chen, Y., Acs Nano 2012, 7 (1), 614.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58686-
dc.description.abstract本篇論文利用各種覆載於中孔洞二氧化矽材料MCM-41的鈷觸媒進行催化反應之探討,共分成兩章,第一章是硼烷氨錯合物(ammonia-borane, NH3BH3)的水解產氫反應研究,具有酸性的中孔洞二氧化矽作為載體之鈷催化劑在水解反應前與還原劑作用容易形成鈷硼化物,對於原本在空氣中容易氧化的鈷金屬來說形成了一層保護,而有利於產氫反應的進行,並藉由X光吸收模擬三種合成方式的鈷催化劑,得到載體酸性對於還原程度具有影響,也證明了此材料在NH3BH3的水解產氫反應中具有較好催化活性的原因。
第二章是單壁奈米碳管(single-walled carbon nanotube, SWCNTs)的生成反應,分別使用表面修飾法、共沉澱法及離子交換法將鈷覆載於MCM-41,並比較了在MCM-41中加入beta-zeolite晶種以提高載體的結構熱穩定性對於SWCNTs純度的影響。藉由調控觸媒的金屬含量、單壁奈米碳管的生長時間、預處理條件、等等,以生成高純度及高產量的SWCNTs。在純化後的產物中,利用光激發螢光儀測量SWCNT的旋光性(chirality)。對於不同製備方式的鈷觸媒,也利用X光吸收光譜進行原位分析,於不同氫氣還原溫度下的結果進行模擬,得到其配位數及價態對於生成單壁奈米碳管的影響。
zh_TW
dc.description.abstractIn Chapter 1, mesoporous silica supported cobalt boride (Co-B) catalysts are rationally designed for hydrogen generation in ammonia-borane hydrolysis reactions under ambient conditions. Cobalt boride catalysts are supported on three different mesoporous silica, including beta-zeolite seeded MCM-41 (Co@M41S) and traditional MCM-41 (Co@M41T) via chemical adsorption onto functionalized surface with 3-trihydroxysilylpropylmethylphosphonate (THPMP), and one-step co-precipitation into mesoporous silica framework (Co@M41C). Our preparation strategies provide two insights to the reactions: first, cobalt oxide species are intrinsically deposited as ultra-small nanoparticles (<2 nm) on mesoporous silica supports; subsequently the nanoparticles are converted to active Co-B catalysts by reduction with sodium borohydride (SB). Three catalysts exhibit significant differences in catalytic reactivities with hydrogen production rates ranked in an order of Co@M41S > Co@M41T > Co@M41C. Detailed analysis of the coordination environments from in situ X-ray absorption spectroscopy (XAS) results confirm reducibility in SB. Amorphous nature of Co-B catalysts are responsible for efficient catalytic activity in Co@M41S and Co@M41T. Ammonia temperature programmed desorption (NH3-TPD) demonstrates support acidity that correlates to the degree of high dispersity and effective reducibility to Co-B. Effects from catalyst sizes, reducibility in SB treatment and surface acidity are studied in detail to compare catalytic reactivities among three types of supports.
In Chapter 2, mesoporous silica-supported cobalt catalysts have been developed by ion-exchanged and co-precipitation method for synthesis of single-walled carbon nanotubes (SWCNTs). In this work, we use CO disproportion reaction at high pressure for production of SWCNTs. The influence of different synthesis conditions and reaction temperature have been investigated with respect to the yield and diameter uniformity of SWCNTs. MCM-41 was used as support. All catalysts were characterized by powder X-ray diffraction (XRD), and N2 adsorption–desorption isotherm, which shown well-ordered nanochannels and high surface area of the silica mesoporous structures. The metal loading amounts were determined by inductively coupled plasma-mass spectroscopy (ICP-MS). SWCNTs were characterized by Raman spectroscopy and transmission electron microscopy (TEM). In Raman spectra, the ratio between signal intensities of G and D-bands (G/D) was used as a purity index to qualitatively estimate the graphitization and the amount of defective carbon in samples. In this study, the effect of metal loading amount to SWCNT have been studied, and the results shown that increasing the metal loading to about 1 wt% could improve G/D values. In early studies, researchers found that cobalt catalysts could synthesize smaller diameter size of SWCNTs than nickel catalysts. However, it seems to have a wider distribution of diameters and lower SWCNTs selectivity. In order to increase the purity of SWCNTs, four kinds of catalyst preparation strategies have been developed for SWCNTs synthesis. We varied the cobalt loading amounts, growth temperature, H2 prereduction temperature, CO duration time and purified the synthesized SWCNTs. A high selective SWCNTs chirality took from our synthesis process.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:25:42Z (GMT). No. of bitstreams: 1
ntu-103-D96223110-1.pdf: 5297673 bytes, checksum: 9cc492e02b3b6357b0a3ede5cd22a4bf (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 II
Abstract III
Contents VI
List of Figure Captions IX
List of Table Captions XV
Mesoporous Silica Supported Cobalt Catalysts for Hydrogen Generation in Hydrolysis of Ammonia Borane 1
1. Introduction 2
2. Materials and methods 7
2.1 Chemicals 7
2.2 Preparation of beta-zeolite seeded and traditional MCM-41 8
2.3 Synthesis of phosphonate-functionalized M41S and M41T 9
2.4 Co@M41S and Co@M41T catalyst syntheses 9
2.5 Synthesis of Co@M41C catalyst via co-precipitation method 11
2.6 Catalyst Characterization 11
2.7 Catalytic hydrogen generation 13
3. Results and Discussion 15
3.1 Structural analysis 15
3.2 Evaluation of catalytic activity 21
3.3 Structural analysis by XAS and NH3-TPD 30
CHAPTER 2 43
Mesoporous Silica Supported Cobalt Catalysts for Growth of Single-Walled Carbon Nanotubes 43
1. Introduction 44
1.1 Mesoporous Silica Supported Cobalt Catalysts 44
1.2 Single-walled carbon nanotubes (SWCNTs) 45
1.3 Chemical vapor deposition (CVD) synthesis 49
2. Experimental Sections 52
2.1 Reagents 52
2.2 Co@MCM-41 catalyst synthesis 53
2.3 Synthesis of single-walled carbon nanotubes (SWCNTs) 55
2.4 SWCNTs purification 56
2.5 Characterization 56
3. Results and Discussion 60
3.1 SWCNTs grow with various cobalt loadings 60
3.2 SWCNTs growth temperature 65
3.3 Hydrogen prereduction temperatures 69
3.4 CO reaction times 73
3.5 SWCNTs Purification 76
3.6 Catalyst preparation method 81
3.7 Structural analysis by XAS 86
4. Conclusions 94
Appendix 95
dc.language.isoen
dc.title中孔洞鈷觸媒應用於產氫及單壁奈米碳管生成zh_TW
dc.titleMesoporous Silica Supported Cobalt Catalysts for Hydrogen Generation and Growth of Single-Walled Carbon Nanotubesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳貴賢(Kuei-Hsien Chen),劉如熹(Ru-Shi Liu),鄭淑芬(Soo-Fin Cheng),吳嘉文(Chia-Wen Wu)
dc.subject.keyword硼烷氨錯合物水解;單壁奈米碳管;鈷觸媒;X光吸收;拉曼光譜,zh_TW
dc.subject.keywordAmmonia-borane hydrolysis,Single-walled carbon nanotubes,Raman spectroscopy,Photoluminescence spectroscopy,EXAFS,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2014-01-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
5.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved