請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58685完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑端(Sue Lin-Chao) | |
| dc.contributor.author | Wei-Syuan Wang | en |
| dc.contributor.author | 王唯萱 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:25:39Z | - |
| dc.date.available | 2018-01-20 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-21 | |
| dc.identifier.citation | Aiba, H. (2007). Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10, 134-139.
Bachmann, B.J. (1972). Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriological Reviews 36, 525-557. Bailey, J. (1993). Host-vector interactions in Escherichia coli. In Bioprocess Design and Control (Springer Berlin Heidelberg), pp. 29-52. Bandyra, K.J., Said, N., Pfeiffer, V., Gorna, M.W., Vogel, J., and Luisi, B.F. (2012). The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E. Mol Cell 47, 943-953. Bouvier, M., Sharma, C.M., Mika, F., Nierhaus, K.H., and Vogel, J. (2008). Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell 32, 827-837. Brennan, R.G., and Link, T.M. (2007). Hfq structure, function and ligand binding. Curr Opin Microbiol 10, 125-133. Brenner, M., and Tomizawa, J. (1991). Quantitation of ColE1-encoded replication elements. Proceedings of the National Academy of Sciences of the United States of America 88, 405-409. Cesareni, G., Cornelissen, M., Lacatena, R.M., and Castagnoli, L. (1984). Control of pMB1 replication: inhibition of primer formation by Rop requires RNA1. The EMBO journal 3, 1365-1369. Chao, Y., Papenfort, K., Reinhardt, R., Sharma, C.M., and Vogel, J. (2012). An atlas of Hfq-bound transcripts reveals 3' UTRs as a genomic reservoir of regulatory small RNAs. The EMBO journal 31, 4005-4019. Chiang, M.K., Lu, M.C., Liu, L.C., Lin, C.T., and Lai, Y.C. (2011). Impact of Hfq on global gene expression and virulence in Klebsiella pneumoniae. PloS one 6, e22248. Cohen, S.N. (1993). Bacterial Plasmids - Their Extraordinary Contribution to Molecular-Genetics. Gene 135, 67-76. De Lay, N., Schu, D.J., and Gottesman, S. (2013). Bacterial Small RNA-based Negative Regulation: Hfq and its Accomplices. The Journal of biological chemistry. del Solar, G., and Espinosa, M. (2000). Plasmid copy number control: an ever-growing story. Molecular Microbiology 37, 492-500. Desnoyers, G., Morissette, A., Prevost, K., and Masse, E. (2009). Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. The EMBO journal 28, 1551-1561. Diaz-Ricci, J.C., Tsu, M., and Bailey, J.E. (1992). Influence of expression of the pet operon on intracellular metabolic fluxes of Escherichia coli. Biotechnology and bioengineering 39, 59-65. Eguchi, Y., Itoh, T., and Tomizawa, J. (1991). Antisense RNA. Annual Review of Biochemistry 60, 631-652. Erdmann, V.A., Barciszewska, M.Z., Hochberg, A., de Groot, N., and Barciszewski, J. (2001). Regulatory RNAs. Cell Mol Life Sci 58, 960-977. FERNANDEZ, M.T.F.d., Lillian, E., and J. T, A. (1968). Factor Fraction required for the Synthesis of Bacteriophage Qβ-RNA. Nature 219, 588-590. Gerdes, K., and Wagner, E.G. (2007). RNA antitoxins. Curr Opin Microbiol 10, 117-124. Glick, B.R. (1995). Metabolic load and heterologous gene expression. Biotechnology advances 13, 247-261. Gottesman, S., and Storz, G. (2011). Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harbor perspectives in biology 3. Hussein, R., and Lim, H.N. (2011). Disruption of small RNA signaling caused by competition for Hfq. Proceedings of the National Academy of Sciences of the United States of America 108, 1110-1115. Hwang, W., Arluison, V., and Hohng, S. (2011). Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Res 39, 5131-5139. Ishikawa, H., Otaka, H., Maki, K., Morita, T., and Aiba, H. (2012). The functional Hfq-binding module of bacterial sRNAs consists of a double or single hairpin preceded by a U-rich sequence and followed by a 3' poly(U) tail. Rna 18, 1062-1074. Itoh, T., and Tomizawa, J. (1980). Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proceedings of the National Academy of Sciences of the United States of America 77, 2450-2454. Kaberdin, V.R., Chao, Y.H., and Lin-Chao, S. (1996). RNase E cleaves at multiple sites in bubble regions of RNA I stem loops yielding products that dissociate differentially from the enzyme. Journal of Biological Chemistry 271, 13103-13109. Lacatena, R.M., and Cesareni, G. (1981). Base-Pairing of Rna-I with Its Complementary Sequence in the Primer Precursor Inhibits Cole1 Replication. Nature 294, 623-626. Lease, R.A., and Belfort, M. (2000). Riboregulation by DsrA RNA: trans-actions for global economy. Mol Microbiol 38, 667-672. Lin-Chao, S., and Bremer, H. (1987). Activities of the RNAI and RNAII promoters of plasmid pBR322. Journal of Bacteriology 169, 1217-1222. Lin-Chao, S., Chen, W.T., and Wong, T.T. (1992). High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6, 3385-3393. Lin-Chao, S., and Cohen, S.N. (1991). The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell 65, 1233-1242. Lin-Chao, S., Wong, T.T., McDowall, K.J., and Cohen, S.N. (1994). Effects of nucleotide sequence on the specificity of rne-dependent and RNase E-mediated cleavages of RNA I encoded by the pBR322 plasmid. The Journal of biological chemistry 269, 10797-10803. Link, T.M., Valentin-Hansen, P., and Brennan, R.G. (2009). Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proceedings of the National Academy of Sciences of the United States of America 106, 19292-19297. Masse, E., and Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 99, 4620-4625. Masukata, H., and Tomizawa, J.-i. (1986). Control of primer formation for ColE1 plasmid replication: Conformational change of the primer transcript. Cell 44, 125-136. Mikulecky, P.J., Kaw, M.K., Brescia, C.C., Takach, J.C., Sledjeski, D.D., and Feig, A.L. (2004). Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nature structural & molecular biology 11, 1206-1214. Mizuno, T., Chou, M.Y., and Inouye, M. (1984). A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proceedings of the National Academy of Sciences of the United States of America 81, 1966-1970. Moon, K., and Gottesman, S. (2011). Competition among Hfq-binding small RNAs in Escherichia coli. Mol Microbiol 82, 1545-1562. Olejniczak, M. (2011). Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry 50, 4427-4440. Ow, D.S.-W., Nissom, P.M., Philp, R., Oh, S.K.-W., and Yap, M.G.-S. (2006). Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzyme and Microbial Technology 39, 391-398. Ow, D.S., Lee, R.M., Nissom, P.M., Philp, R., Oh, S.K., and Yap, M.G. (2007). Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. Journal of biotechnology 131, 261-269. Panja, S., Schu, D.J., and Woodson, S.A. (2013). Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 41, 7536-7546. Prevost, K., Salvail, H., Desnoyers, G., Jacques, J.F., Phaneuf, E., and Masse, E. (2007). The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 64, 1260-1273. Repoila, F., and Darfeuille, F. (2009). Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biology of the cell / under the auspices of the European Cell Biology Organization 101, 117-131. Salim, N.N., and Feig, A.L. (2010). An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction. PloS one 5. Sauer, E., Schmidt, S., and Weichenrieder, O. (2012). Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proceedings of the National Academy of Sciences of the United States of America 109, 9396-9401. Sauer, E., and Weichenrieder, O. (2011). Structural basis for RNA 3'-end recognition by Hfq. Proceedings of the National Academy of Sciences of the United States of America 108, 13065-13070. Sayed, N., Jousselin, A., and Felden, B. (2012). A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. Nature structural & molecular biology 19, 105-112. Schumacher, M.A., Pearson, R.F., Moller, T., Valentin-Hansen, P., and Brennan, R.G. (2002). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. The EMBO journal 21, 3546-3556. Silva, F., Queiroz, J.A., and Domingues, F.C. (2012). Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology advances 30, 691-708. Sittka, A., Lucchini, S., Papenfort, K., Sharma, C.M., Rolle, K., Binnewies, T.T., Hinton, J.C., and Vogel, J. (2008). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS genetics 4, e1000163. Sobrero, P., and Valverde, C. (2012). The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38, 276-299. Sozhamannan, S., Morris, J.G., Jr., and Stitt, B.L. (1999). Instability of pUC19 in Escherichia coli transcription termination factor mutant, rho026. Plasmid 41, 63-69. Storz, G., Vogel, J., and Wassarman, K.M. (2011). Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43, 880-891. Stougaard, P., Molin, S., and Nordstrom, K. (1981). RNAs involved in copy-number control and incompatibility of plasmid R1. Proceedings of the National Academy of Sciences of the United States of America 78, 6008-6012. Tomizawa, J.-I. (1986). Control of ColE1 plasmid replication: Binding of RNA I to RNA II and inhibition of primer formation. Cell 47, 89-97. Tomizawa, J.-i. (1990). Control of ColE1 Plasmid replication: Interaction of rom protein with an unstable complex formed by RNA I and RNA II. Journal of Molecular Biology 212, 695-708. Tomizawa, J.-i., and Som, T. (1984). Control of cole 1 plasmid replication: Enhancement of binding of RNA I to the primer transcript by the rom protein. Cell 38, 871-878. Tomizawa, J., Itoh, T., Selzer, G., and Som, T. (1981). Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proceedings of the National Academy of Sciences of the United States of America 78, 1421-1425. Tucker, W.T., Miller, C.A., and Cohen, S.N. (1984). Structural and Functional-Analysis of the Par Region of the Psc101-Plasmid. Cell 38, 191-201. Updegrove, T.B., and Wartell, R.M. (2011). The influence of Escherichia coli Hfq mutations on RNA binding and sRNA*mRNA duplex formation in rpoS riboregulation. Biochimica et biophysica acta 1809, 532-540. Urban, J.H., and Vogel, J. (2008). Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS biology 6, e64. Vogel, J., and Luisi, B.F. (2011). Hfq and its constellation of RNA. Nature reviews Microbiology 9, 578-589. Wagner, E.G., and Simons, R.W. (1994). Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48, 713-742. Wang, Z., Xiang, L., Shao, J., Wegrzyn, A., and Wegrzyn, G. (2006). Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microbial cell factories 5, 34. Xu, F., Lin-Chao, S., and Cohen, S.N. (1993). The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proceedings of the National Academy of Sciences of the United States of America 90, 6756-6760. Zhang, A., Wassarman, K.M., Ortega, J., Steven, A.C., and Storz, G. (2002). The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9, 11-22. Zhang, A., Wassarman, K.M., Rosenow, C., Tjaden, B.C., Storz, G., and Gottesman, S. (2003). Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50, 1111-1124. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58685 | - |
| dc.description.abstract | 現今科學研究中,質體常用來做為基因表現、基因重組的工具。然而,質體的存在會造成細菌的代謝壓力,因此,質體的數量必須要被嚴密的調控。ColE1 型質體的複製是從引子核醣核酸 RNAII 的轉錄開始,用以做為去氧核醣核酸複製的引子。另一方面,反股核醣核酸 RNAI 會與 RNAII 進行鹼基配對以防止 RNAII 與質體雜合而抑制質體複製。雖然先前研究已發現質體會影響細菌的代謝以及改變其
基因表現,然而,其詳盡的調控機制目前仍不清楚。調控型微小核醣核酸可分為三個功能區,分別為種子區域(seed region)、伴護蛋白 Hfq 結合區、及終結子(ρ-independent terminator)。RNAI 也帶有相同終結子,我們首先想利用 RNA-seq 技術了解是否質體上的反股核醣核酸 RNAI 能夠改變宿主的基因表現。實驗發現宿主的 4497 個基因中有 177 個基因會因為 RNAI 的存在而有兩倍以上的表現量差異。利用 EMSA 技術發現 RNAI 與 Hfq 有高度結合力。利用突變的 Hfq 蛋白進一步分析,我們發現 Hfq 近端面突變會影響RNAI 與 Hfq的結合。另外,細菌本身的調控型核醣核酸會與 RNAI 競爭 Hfq 蛋白的結合。最後,利用定量聚合脢連鎖反應(qPCR)技術,我們進一步確認 RNAI 對於基因表現的調控需要 Hfq 的參與。綜合上述實驗,我們認為 RNAI 可能和微小型核醣核酸以相同方式作用,且其功能需要 Hfq 蛋白的參與。當 RNAI 存在時,RNAI 可能會與調控型核醣核酸競爭 Hfq 間接改變原有的基因表現調控或是在 Hfq 的幫助下能直接調控細菌的基因表現。 | zh_TW |
| dc.description.abstract | Plasmid, a small self-replicated extra-chromsomal DNA element, is widely used in scientific research nowadays. However, introduction of plasmids causes metabolic burden to cells, and therefore, the plasmid copy number needs to be tightly regulated. ColE1-type plasmid replication is initiated by primer RNAII transcription, which serves as primer for DNA polymerase to execute DNA synthesis. On the other hand, the antisense regulator RNAI negatively controls ColE1 plasmid replication by base paring with RNAII, which prevents RNAII-DNA hybrid formation. Although it has been known that upon plasmid-host interaction, cell will have metabolic shift and change gene expressions, however, the underlying mechanism is still unknown. The endogenous sRNAs have 3 functional elements including the seed region, the Hfq binding site, and the ρ-independent terminator. Since RNAI has also ρ-independent terminator, we first used RNA-seq to investigate whether the plasmid-born antisense regulator RNAI also can change gene expression of host. We found that RNAI itself changes host gene expression more than 2 folds for 177 genes over 4497 genes tested. By using in vitro electrophoretic mobility shift assay (EMSA), we found that RNAI binds to Hfq with submicromolar binding affinity. Furthermore, by using Hfq proximal and distal face mutants, we found that only proximal face mutations disrupted RNAI binding. This data suggests that similar to most endogenous sRNAs, RNAI also bind to the proximal face of Hfq. Competition assay shows that RNAI competes with endogenous sRNAs for binding. By using quantitative PCR, we further show that the effects of RNAI on host gene expression depend on the existence of Hfq. In this study, we suggest that Hfq-dependent sRNA-like function could be one of the possible mechanism of how RNAI affects host gene expression. Introduction of RNAI might affect host gene expression either indirectly by competing Hfq binding or by directly targeting to host genes aided by
Hfq. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:25:39Z (GMT). No. of bitstreams: 1 ntu-103-R00448012-1.pdf: 2502666 bytes, checksum: cf7581e8ac6a70394cd2287252cc6673 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iii Table of Contents v List of Tables and Figures vi Introduction 1 Biotechnological Applications of Plasmids and Their Effects on Host Cells 1 ColE1-Type Plasmid Replication and the Role of RNAI 2 Control of Gene Expression and Regulatory Non-Coding RNA 4 Regulatory Non-Coding RNAs in Bacteria 4 Role of RNA Chaperone Hfq in sRNA Regulation 7 Competition between sRNAs 8 RNAI per se Affects Gene Expression of Host with the Aid of Hfq Protein 9 Materials and Methods 11 Results 17 RNAI per se Affects Gene Expressions of E. coli Host 17 RNAI Has a High Binding Affinity to Wild Type Hfq Protein 18 RNAI Binds to the Proximal Face of Hfq Protein 19 Competition Between sRNAs and RNAI for Hfq Protein Binding 20 Both 5' End and 3' Stem-Loop of RNAI Are Required for Hfq Binding 22 Deletion of Hfq Withdraws the Effects of RNAI on Gene Expression 22 Discussion 25 References 29 Tables and Figures 39 Appendix 49 | |
| dc.language.iso | en | |
| dc.subject | Hfq蛋白 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 調控型核醣核酸 | zh_TW |
| dc.subject | 質體-細菌的影響 | zh_TW |
| dc.subject | RNAI | zh_TW |
| dc.subject | RNAI | en |
| dc.subject | Hfq | en |
| dc.subject | E. coli | en |
| dc.subject | sRNA regulation | en |
| dc.subject | plasmid-host interaction | en |
| dc.title | 大腸桿菌中ColE1質體上調控型核醣核酸RNAI的非典型功能 | zh_TW |
| dc.title | Noncanonical function of ColE1-type plasmid regulator RNAI in E.coli | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐立中(Li-Chung Hsu),譚婉玉(Woan-Yuh Tarn) | |
| dc.subject.keyword | 調控型核醣核酸,Hfq蛋白,RNAI,質體-細菌的影響,大腸桿菌, | zh_TW |
| dc.subject.keyword | sRNA regulation,Hfq,RNAI,plasmid-host interaction,E. coli, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
