Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58684
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱浩傑
dc.contributor.authorJung-Hsin Loen
dc.contributor.author羅榮新zh_TW
dc.date.accessioned2021-06-16T08:25:36Z-
dc.date.available2016-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-01-22
dc.identifier.citation1. Diacovich, L. and J.P. Gorvel, Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol, 2010. 8(2): p. 117-28.
2. Casadevall, A., Evolution of intracellular pathogens. Annu Rev Microbiol, 2008. 62: p. 19-33.
3. Christophe, T., et al., High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog, 2009. 5(10): p. e1000645.
4. Monack, D.M., A. Mueller, and S. Falkow, Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol, 2004. 2(9): p. 747-65.
5. Carryn, S., et al., Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am, 2003. 17(3): p. 615-34.
6. Barcia-Macay, M., et al., Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother, 2006. 50(3): p. 841-51.
7. Stewart, G.R., B.D. Robertson, and D.B. Young, Tuberculosis: a problem with persistence. Nat Rev Microbiol, 2003. 1(2): p. 97-105.
8. Dalton, T., et al., Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet, 2012. 380(9851): p. 1406-17.
9. Butler, T., Treatment of typhoid fever in the 21st century: promises and shortcomings. Clin Microbiol Infect, 2011. 17(7): p. 959-63.
10. Haraga, A., M.B. Ohlson, and S.I. Miller, Salmonellae interplay with host cells. Nat Rev Microbiol, 2008. 6(1): p. 53-66.
11. de Chastellier, C., et al., Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes. Cell Microbiol, 2009. 11(8): p. 1190-207.
12. Finlay, B.B. and R.E. Hancock, Can innate immunity be enhanced to treat microbial infections? Nat Rev Microbiol, 2004. 2(6): p. 497-504.
13. Kuijl, C., et al., Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature, 2007. 450(7170): p. 725-U10.
14. Schwegmann, A. and F. Brombacher, Host-directed drug targeting of factors hijacked by pathogens. Sci Signal, 2008. 1(29): p. re8.
15. Zumla, A., P. Nahid, and S.T. Cole, Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov, 2013. 12(5): p. 388-404.
16. Scott, M.G., et al., An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol, 2007. 25(4): p. 465-72.
17. Thacker, J.D., et al., NLRP3 inflammasome is a target for development of broad-spectrum anti-infective drugs. Antimicrob Agents Chemother, 2012. 56(4): p. 1921-30.
18. Kuijl, C., et al., Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature, 2007. 450(7170): p. 725-30.
19. Piacenti, F.J. and K.D. Leuthner, Antimicrobial stewardship and clostridium difficile-associated diarrhea. J Pharm Pract, 2013. 26(5): p. 506-13.
20. Zhu, J., et al., From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res, 2004. 64(12): p. 4309-18.
21. Yacoub, A., et al., OSU-03012 promotes caspase-independent but PERK-, cathepsin B-, BID-, and AIF-dependent killing of transformed cells. Mol Pharmacol, 2006. 70(2): p. 589-603.
22. Wang, Y.C., et al., Targeting endoplasmic reticulum stress and Akt with OSU-03012 and gefitinib or erlotinib to overcome resistance to epidermal growth factor receptor inhibitors. Cancer Res, 2008. 68(8): p. 2820-30.
23. Gao, M., et al., OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma. Cancer Res, 2008. 68(22): p. 9348-57.
24. Chiu, H.C., et al., Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob Agents Chemother, 2009. 53(12): p. 5236-44.
25. Chiu, H.C., et al., Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent. J Biomed Sci, 2009. 16: p. 110.
26. Magnet, S. and J.S. Blanchard, Molecular insights into aminoglycoside action and resistance. Chem Rev, 2005. 105(2): p. 477-98.
27. Maurin, M. and D. Raoult, Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrobial Agents and Chemotherapy, 2001. 45(11): p. 2977-2986.
28. Kihlstrom, E. and L. Andaker, Inability of gentamicin and fosfomycin to eliminate intracellular Enterobacteriaceae. J Antimicrob Chemother, 1985. 15(6): p. 723-8.
29. Seral, C., F. Van Bambeke, and P.M. Tulkens, Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother, 2003. 47(7): p. 2283-92.
30. Wentwort.Bb, Use of Gentamicin in Isolation of Subgroup-a Chlamydia. Antimicrobial Agents and Chemotherapy, 1973. 3(6): p. 698-702.
31. White, L.A., et al., Effect of Gentamicin on Growth of Viral, Chlamydial, and Rickettsial Agents in Mice and Embryonated Eggs. Antimicrobial Agents and Chemotherapy, 1976. 10(2): p. 344-346.
32. Fierer, J., et al., Successful Treatment Using Gentamicin Liposomes of Salmonella-Dublin Infections in Mice. Antimicrobial Agents and Chemotherapy, 1990. 34(2): p. 343-348.
33. Gnanadhas, D.P., et al., Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother, 2013. 68(11): p. 2576-86.
34. Coburn, B., G.A. Grassl, and B.B. Finlay, Salmonella, the host and disease: a brief review. Immunol Cell Biol, 2007. 85(2): p. 112-8.
35. Crump, J.A. and E.D. Mintz, Global trends in typhoid and paratyphoid Fever. Clin Infect Dis, 2010. 50(2): p. 241-6.
36. Phongmany, S., et al., A randomized comparison of oral chloramphenicol versus ofloxacin in the treatment of uncomplicated typhoid fever in Laos. Trans R Soc Trop Med Hyg, 2005. 99(6): p. 451-8.
37. Thaver, D., et al., A comparison of fluoroquinolones versus other antibiotics for treating enteric fever: meta-analysis. BMJ, 2009. 338: p. b1865.
38. Crump, J.A., et al., Clinical response and outcome of infection with Salmonella enterica serotype Typhi with decreased susceptibility to fluoroquinolones: a United States foodnet multicenter retrospective cohort study. Antimicrob Agents Chemother, 2008. 52(4): p. 1278-84.
39. Parry, C.M., et al., The influence of reduced susceptibility to fluoroquinolones in Salmonella enterica serovar Typhi on the clinical response to ofloxacin therapy. PLoS Negl Trop Dis, 2011. 5(6): p. e1163.
40. Falagas, M.E., et al., Impact of antibiotic MIC on infection outcome in patients with susceptible Gram-negative bacteria: a systematic review and meta-analysis. Antimicrob Agents Chemother, 2012. 56(8): p. 4214-22.
41. Sabbagh, S.C., et al., So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett, 2010. 305(1): p. 1-13.
42. Steele-Mortimer, O., The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol, 2008. 11(1): p. 38-45.
43. Watson, K.G. and D.W. Holden, Dynamics of growth and dissemination of Salmonella in vivo. Cell Microbiol, 2010. 12(10): p. 1389-97.
44. Fredriksson-Ahomaa, M., A. Stolle, and H. Korkeala, Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol Med Microbiol, 2006. 47(3): p. 315-29.
45. Schulte, R., et al., Translocation of Yersinia entrocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to beta1 integrins apically expressed on M-like cells. Cell Microbiol, 2000. 2(2): p. 173-85.
46. Wikler, M.A., Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement. Clinical and Laboratory Standards Institute, 2008.
47. Karasawa, T., et al., CLIMP-63 is a gentamicin-binding protein that is involved in drug-induced cytotoxicity. Cell Death Dis, 2010. 1: p. e102.
48. Irizarry, R.A., et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003. 4(2): p. 249-64.
49. Wang, X., et al., PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res, 2012. 40(Database issue): p. D1144-9.
50. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001. 25(4): p. 402-408.
51. Bustin, S.A., et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 2009. 55(4): p. 611-22.
52. Wren, B.W., The yersiniae--a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol, 2003. 1(1): p. 55-64.
53. Menashe, O., et al., Aminoglycosides affect intracellular Salmonella enterica serovars typhimurium and virchow. Antimicrob Agents Chemother, 2008. 52(3): p. 920-6.
54. Drevets, D.A., et al., Gentamicin kills intracellular Listeria monocytogenes. Infect Immun, 1994. 62(6): p. 2222-8.
55. Tulkens, P. and A. Trouet, The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibroblasts. Biochem Pharmacol, 1978. 27(4): p. 415-24.
56. Bonventre, P.F. and J.G. Imhoff, Uptake of h-dihydrostreptomycin by macrophages in culture. Infect Immun, 1970. 2(1): p. 89-95.
57. Feghali, C.A. and T.M. Wright, Cytokines in acute and chronic inflammation. Front Biosci, 1997. 2: p. d12-26.
58. Kipanyula, M.J., et al., Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal, 2013. 25(2): p. 403-16.
59. Raulet, D.H., et al., Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol, 2013. 31: p. 413-41.
60. Williams, P.D., et al., Correlation between renal membrane binding and nephrotoxicity of aminoglycosides. Antimicrob Agents Chemother, 1987. 31(4): p. 570-4.
61. Wu, X., et al., Effects of DMEM and RPMI 1640 on the biological behavior of dog periosteum-derived cells. Cytotechnology, 2009. 59(2): p. 103-11.
62. Barry, A.L., et al., Revision of standards for adjusting the cation content of Mueller-Hinton broth for testing susceptibility of Pseudomonas aeruginosa to aminoglycosides. J Clin Microbiol, 1992. 30(3): p. 585-9.
63. Sweileh, W.M., A prospective comparative study of gentamicin- and amikacin-induced nephrotoxicity in patients with normal baseline renal function. Fundam Clin Pharmacol, 2009. 23(4): p. 515-20.
64. Newman, M.J., et al., Resistance to antimicrobial drugs in Ghana. Infect Drug Resist, 2011. 4: p. 215-20.
65. Rotimi, V.O., et al., Emergence of multidrug-resistant Salmonella spp. and isolates with reduced susceptibility to ciprofloxacin in Kuwait and the United Arab Emirates. Diagn Microbiol Infect Dis, 2008. 60(1): p. 71-7.
66. Manchanda, V., et al., Treatment of enteric fever in children on the basis of current trends of antimicrobial susceptibility of Salmonella enterica serovar typhi and paratyphi A. Indian J Med Microbiol, 2006. 24(2): p. 101-6.
67. Morosini, M.I., et al., Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother, 2006. 50(8): p. 2695-9.
68. Caron, R.W., et al., Activated forms of H-RAS and K-RAS differentially regulate membrane association of PI3K, PDK-1, and AKT and the effect of therapeutic kinase inhibitors on cell survival. Mol Cancer Ther, 2005. 4(2): p. 257-70.
69. Steele-Mortimer, O., et al., Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem, 2000. 275(48): p. 37718-24.
70. Larsson, C., Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal, 2006. 18(3): p. 276-84.
71. Grismayer, B., et al., Rab31 expression levels modulate tumor-relevant characteristics of breast cancer cells. Mol Cancer, 2012. 11: p. 62.
72. Jin, C., et al., Cooperative interaction between the MUC1-C oncoprotein and the Rab31 GTPase in estrogen receptor-positive breast cancer cells. PLoS One, 2012. 7(7): p. e39432.
73. Fernandez, J.R., B. Byrne, and B.L. Firestein, Phylogenetic analysis and molecular evolution of guanine deaminases: from guanine to dendrites. J Mol Evol, 2009. 68(3): p. 227-35.
74. Galan, J.E. and D. Zhou, Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc Natl Acad Sci U S A, 2000. 97(16): p. 8754-61.
75. Bakowski, M.A., et al., The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe, 2010. 7(6): p. 453-62.
76. Hannemann, S., B. Gao, and J.E. Galan, Salmonella modulation of host cell gene expression promotes its intracellular growth. PLoS Pathog, 2013. 9(10): p. e1003668.
77. Akum, B.F., et al., Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci, 2004. 7(2): p. 145-52.
78. Brumell, J.H., D.L. Goosney, and B.B. Finlay, SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic, 2002. 3(6): p. 407-15.
79. Errington, W.J., et al., Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure, 2012. 20(7): p. 1141-53.
80. Watschinger, K. and E.R. Werner, Orphan enzymes in ether lipid metabolism. Biochimie, 2013. 95(1): p. 59-65.
81. Morey, J.S., J.C. Ryan, and F.M. Van Dolah, Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online, 2006. 8: p. 175-93.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58684-
dc.description.abstract傳染性疾病威脅著人類的生命,傳染病的控管也對全世界的醫療、公共衛生與經濟上造成重大的負擔。其中胞內細菌的感染症容易造成持續性感染以及抗藥性的產生,因研究指出胞內細菌在宿主細胞的細胞膜屏障下,難以被抗生素完全消滅。AR-12 (a.k.a. OSU-03012)原先是作為抗癌的藥物,先前我們發現AR-12能夠藉由作用在巨噬細胞來清除胞內細菌,而非直接毒殺細菌;其抑菌能力使得AR-12有潛力成為一種治療胞內細菌感染的藥物。我們進一步評估AR-12與胺基醣苷類抗生素的合併治療對胞內細菌感染的效果,因胺基醣苷類抗生素本身對於細胞內沙門氏桿菌與耶爾森氏桿菌這類胞內細菌的抑菌能力不佳。由細胞實驗的結果發現,在AR-12與胺基醣苷類抗生素的合併處理下,不僅能夠有效抑制巨噬細胞內的胞內細菌,同時能夠抑制細胞外細菌之增生。接著我們發現AR-12對巨噬細胞內的鼠傷寒沙門氏桿菌或腸炎耶爾森氏桿菌等胞內細菌皆有抑制的效果,卻對於大腸上皮細胞內該兩種胞內細菌皆不具抑制的能力,因此AR-12的抑菌能力取決於宿主細胞的類型,並對不同的胞內細菌具有療效。我們在動物實驗的結果更發現到,對受到鼠傷寒沙門氏桿菌感染的小鼠同時給予AR-12與胺基醣苷類抗生素作合併治療,能夠有效提升小鼠的存活率,而只投予小鼠胺基醣苷類抗生素則沒有顯著的療效。此外,我們進一步分析受到鼠傷寒沙門氏桿菌感染後的巨噬細胞在AR-12的作用下,其全基因表現上的變化,以探討AR-12的作用機制。總之我們以AR-12作為範例,證實以宿主為導向的抗細菌藥物可作為胺基醣苷類抗生素的佐劑,來有效治療胞內細菌所引發的感染症。zh_TW
dc.description.abstractInfectious diseases threaten lives of human and cause a heavy burden on medicine, public health, and economy worldwide. Infection caused by intracellular bacteria, which are shown to be protected from antibiotics by cellular membranes and are therefore difficult to be eliminated completely, often causes persistent infection as well as the development of drug resistance. AR-12 (a.k.a. OSU-03012), which was originally developed as an anti-cancer drug, has been shown to be capable of eliminating intracellular bacteria within macrophages through targeting on host cells rather than killing bacteria directly. The novel antibacterial activity of AR-12 renders it a potential drug for the treatment of intracellular bacterial infection. Here, we assessed the combinatory effect of AR-12 with aminoglycosides, which have been shown to exhibit poor activity against intracellular bacteria, including Salmonella and Yersinia. The results of in vitro cell-based experiments indicated that combined treatments of AR-12 and aminoglycosides suppress not only intracellular bacteria in macrophages but also those reside extracellularly. Subsequent results suggest that the antimicrobial activity of AR-12 is cell-type specific, not bacteria-specific as both Salmonella Typhimurium and Yersinia enterocolitica within macrophages are susceptive to AR-12 while those residing in colon epithelial cells are not. On top of that, in vivo assessment also showed that combined administration of AR-12 and aminoglycosides can significantly improve the survival of S. Typhimurium-infected Balb/c mice in comparing to those received aminoglycosides alone. In addition, we further analyzed the whole genomic expression profiles of Salmonella-infected cells under AR-12 treatment to study the action mechanism. Altogether, AR-12 represents a proof of principle that the host-directed antimicrobial drug can act as an adjuvant of aminoglycoside antibiotics for the treatment of infection caused by intracellular bacteria.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:25:36Z (GMT). No. of bitstreams: 1
ntu-103-R99424006-1.pdf: 4703147 bytes, checksum: f8aad41c34570d1968eaac5000ead1d6 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
1. Introduction 1
1.1 Intracellular Bacterial Infection and the Difficulties in Clinical Treatment 2
1.2 Host-directed Strategy Against Intracellular Bacteria 3
1.3 The Host-directed Antibacterial Drug “AR-12” 4
1.4 Combination Therapy of AR-12 and Aminoglycosides 5
1.5 Models of Intracellular Bacteria for This Study 5
1.5.1 Salmonella enterica 5
1.5.2 Yersinia enterocolitica 7
1.6 Specific Aims 7
2. Materials and Methods 8
2.1 Bacteria Strains and Culture Condition 9
2.2 Cell Lines and Culture Condition 9
2.3 Drugs and Reagents 10
2.4 Cell Viability Assay 10
2.5 Minimum Inhibitory Concentration Assay 10
2.6 Preparation of Bacteria for Infection of Cells and Mice 11
2.7 Bacteria Growth Analysis of Salmonella Typhimurium in Cell Culture Using Colony Formation Unit Assay 11
2.8 Bacteria Growth Analysis of Yersinia enterocolitica in Cell Culture Using Colony Formation Unit Assay 13
2.9 Extracellular Growth Inhibition Assay 13
2.10 Analysis of Entry of Aminoglycosides into Macrophages 14
2.11 In Vivo Assessment of Drug Efficacy Against Salmonella Typhimurium Infection in Balb/c Mice 14
2.12 RNA Isolation and Expression Microarray Experiment 15
2.13 Data Processing of Expression Microarray Results 17
2.14 Validation of Gene Expression by Real-time PCR 17
2.15 Statistical Analysis 19
3. Results 20
3.1 Cytotoxicity of AR-12 to Cell Cultures 21
3.2 AR-12 Suppresses Salmonella Typhimurium inside Macrophages without Killing Bacteria Directly 21
3.3 AR-12 Suppresses Yersinia enterocolitica inside Macrophages without Killing Bacteria Directly 22
3.4 AR-12 Shows No Inhibitory Effect Against Intracellular Salmonella Typhimurium in Colon Epithelial Cells 23
3.5 AR-12 Shows No Inhibitory Effect Against Intracellular Yersinia enterocolitica in Colon Epithelial Cells 24
3.6 Combined Treatments of AR-12 and Aminoglycosides Suppress both Extracellular and Intracellular Salmonella Typhimurium within Macrophages 25
3.7 The Combinatory Effect of AR-12 Is Not Through Enhancing the Aminoglycosides’ Antibacterial Activity, or Facilitating the Accumulation of Aminoglycosides within Macrophages 26
3.8 Combination of Aminoglycosides and AR-12 Improves the Survivals of Salmonella-infected Balb/c Mice 28
3.9 Expression Microarray Analysis and Real-time PCR Validation of Candidate Genes 29
4. Discussion 31
4.1 Combination Therapy of AR-12 with Aminoglycosides In Vitro and In Vivo 32
4.2 Distinct Effects of AR-12 on Intracellular Bacteria in Different Types of Cells 34
4.3 Genes Regulated in AR-12 Treatment 35
4.4 Conclusion and Future Prospects 37
5. References 38
6. Tables 48
Table 1. AR-12 does not enhance the antibacterial activity of aminoglycosides against Salmonella Typhimurium. 49
Table 2. AR-12 does not facilitate entry of aminoglycosides into macrophages. 50
Table 3. Candidate genes sorted in expression microarray 51
Table 4. Real-time PCR validation of candidate genes 52
7. Figures 53
Figure 1. Cytotoxicity of AR-12. 54
Figure 2. AR-12 inhibits intracellular growth of S. Typhimurium in macrophages. 55
Figure 3. Direct AR-12 treatment on S. Typhimurium. 57
Figure 4. AR-12 inhibits intracellular growth of Y. enterocolitica in macrophages. 59
Figure 5. Direct AR-12 treatment on Y. enterocolitica. 60
Figure 6. No significant inhibitory effect of AR-12 on intracellular growth of S. Typhimurium in epithelial cell lines. 62
Figure 7. No significant inhibitory effect of AR-12 on intracellular growth of Y. enterocolitica in colon epithelial cells. 63
Figure 8. Combined treatment of gentamicin and AR-12 inhibits S. Typhimurium in macrophages. 64
Figure 9. Dose-dependent inhibitory effect of aminoglycosides combined with AR-12 on S. Typhimurium in macrophages. 66
Figure 10. Combined administration of aminoglycosides and AR-12 improves the survival of S. Typhimurium-infected mice 68
Figure 11. Relative expression of candidate genes at 6 hours of treatment by real-time PCR 70
Figure 12. Relative expression of candidate genes at 8 hours of treatment by real-time PCR 72
8. Appendix 74
Supplementary Table 1. Primers for real-time PCR reaction 75
Supplementary Figure 1. Effect of AR-12 dissolved in 5% captisol normal saline in vitro 76
dc.language.isoen
dc.subject胞內細菌zh_TW
dc.subject抗微生物製劑zh_TW
dc.subject合併藥物zh_TW
dc.subjectintracellular bacteriaen
dc.subjectantimicrobial agenten
dc.subjectdrug combinationen
dc.title評估以宿主為標的之抗胞內細菌感染藥物AR-12zh_TW
dc.titleEvaluation of a Host-Directed Antimicrobial Drug AR-12 Against Intracellular Bacterial Infectionen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧麗珍,蕭崇瑋,陳昌熙,顏伯勳
dc.subject.keyword胞內細菌,抗微生物製劑,合併藥物,zh_TW
dc.subject.keywordintracellular bacteria,antimicrobial agent,drug combination,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2014-01-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved