請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58666完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李立仁(Li-Jen Lee) | |
| dc.contributor.author | Sih-Ting Lin | en |
| dc.contributor.author | 林思婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:24:43Z | - |
| dc.date.available | 2019-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-22 | |
| dc.identifier.citation | Reference
Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374:450-453. Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nature neuroscience 9:723-727. Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2010) Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. The European journal of neuroscience 31:1368-1376. Alvarenga TA, Patti CL, Andersen ML, Silva RH, Calzavara MB, Lopez GB, Frussa-Filho R, Tufik S (2008) Paradoxical sleep deprivation impairs acquisition, consolidation, and retrieval of a discriminative avoidance task in rats. Neurobiology of learning and memory 90:624-632. Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA (2012) The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behavioural brain research 226:205-210. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive processing 13:93-110. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological reviews 64:238-258. Barker GR, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:2948-2957. Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience 167:588-597. Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17:5-11. Bueno OF, Oliveira GM, Lobo LL, Morais PR, Melo FH, Tufik S (2000) Cholinergic modulation of inhibitory avoidance impairment induced by paradoxical sleep deprivation. Progress in neuro-psychopharmacology & biological psychiatry 24:595-606. Campbell IG, Gustafson LM, Feinberg I (2002) The competitive NMDA receptor antagonist CPPene stimulates NREM sleep and eating in rats. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 26:348-357. Chiba AA, Kesner RP, Gibson CJ (1997) Memory for temporal order of new and familiar spatial location sequences: role of the medial prefrontal cortex. Learn Mem 4:311-317. Cohen HB, Dement WC (1965) Sleep: changes in threshold to electroconvulsive shock in rats after deprivation of 'paradoxical' phase. Science 150:1318-1319. Cosmo S, Francisco JC, Cunha RC, Macedo RM, Faria-Neto JR, Simeoni R, Carvalho KA, Olandoski M, Miyague NI, Amaral VF, Guarita-Souza LC (2012) Effect of exercise associated with stem cell transplantation on ventricular function in rats after acute myocardial infarction. Revista brasileira de cirurgia cardiovascular : orgao oficial da Sociedade Brasileira de Cirurgia Cardiovascular 27:542-551. Davis CJ, Harding JW, Wright JW (2003) REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain research 973:293-297. Dinges DF, Pack F, Williams K, Gillen KA, Powell JW, Ott GE, Aptowicz C, Pack AI (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep 20:267-277. Drummond SP, Brown GG, Gillin JC, Stricker JL, Wong EC, Buxton RB (2000) Altered brain response to verbal learning following sleep deprivation. Nature 403:655-657. Eadie BD, Redila VA, Christie BR (2005) Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. The Journal of comparative neurology 486:39-47. Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP (2003) The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. The European journal of neuroscience 18:2357-2364. Fishbein W, Gutwein BM (1977) Paradoxical sleep and memory storage processes. Behavioral biology 19:425-464. Griffin EW, Bechara RG, Birch AM, Kelly AM (2009) Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19:973-980. Guan Z, Peng X, Fang J (2004) Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain research 1018:38-47. Guiney H, Machado L (2013) Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic bulletin & review 20:73-86. Guzman-Marin R, Suntsova N, Methippara M, Greiffenstein R, Szymusiak R, McGinty D (2005) Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. The European journal of neuroscience 22:2111-2116. Hagewoud R, Havekes R, Tiba PA, Novati A, Hogenelst K, Weinreder P, Van der Zee EA, Meerlo P (2010) Coping with sleep deprivation: shifts in regional brain activity and learning strategy. Sleep 33:1465-1473. Hairston IS, Little MT, Scanlon MD, Barakat MT, Palmer TD, Sapolsky RM, Heller HC (2005) Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning. Journal of neurophysiology 94:4224-4233. Hannesson DK, Vacca G, Howland JG, Phillips AG (2004) Medial prefrontal cortex is involved in spatial temporal order memory but not spatial recognition memory in tests relying on spontaneous exploration in rats. Behavioural brain research 153:273-285. Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain research Brain research reviews 45:104-114. Honda K, Komoda Y, Inoue S (1994) Oxidized glutathione regulates physiological sleep in unrestrained rats. Brain research 636:253-258. Huang CC, Liang YC, Hsu KS (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. The Journal of biological chemistry 276:48108-48117. Jan JE, Reiter RJ, Bax MC, Ribary U, Freeman RD, Wasdell MB (2010) Long-term sleep disturbances in children: a cause of neuronal loss. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society 14:380-390. Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y, Shaw CA (1999)Glutathione and signal transduction in the mammalian CNS. Journal of neurochemistry 73:889-902. Jinno S (2011) Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus 21:467-480. Jouvet D, Vimont P, Delorme F, Jouvet M (1964) [Study of Selective Deprivation of the Paradoxal Sleep Phase in the Cat]. Comptes rendus des seances de la Societe de biologie et de ses filiales 158:756-759. Kamphuis J, Meerlo P, Koolhaas JM, Lancel M (2012) Poor sleep as a potential causal factor in aggression and violence. Sleep medicine 13:327-334. Kamsler A, Segal M (2003) Hydrogen peroxide modulation of synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:269-276. Khabour OF, Alzoubi KH, Alomari MA, Alzubi MA (2010) Changes in spatial memory and BDNF expression to concurrent dietary restriction and voluntary exercise. Hippocampus 20:637-645. Killgore WD (2010) Effects of sleep deprivation on cognition. Progress in brain research 185:105-129. Koehl M, Meerlo P, Gonzales D, Rontal A, Turek FW, Abrous DN (2008) Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22:2253-2262. Kopasz M, Loessl B, Hornyak M, Riemann D, Nissen C, Piosczyk H, Voderholzer U (2010) Sleep and memory in healthy children and adolescents - a critical review. Sleep medicine reviews 14:167-177. Kossel AH, Cambridge SB, Wagner U, Bonhoeffer T (2001) A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation. Proceedings of the National Academy of Sciences of the United States of America 98:14702-14707. Kovalzon VM, Tsibulsky VL (1984) REM-sleep deprivation, stress and emotional behavior in rats. Behavioural brain research 14:235-245. Kumar A, Garg R (2008) A role of nitric oxide mechanism involved in the protective effects of venlafaxine in sleep deprivation. Behavioural brain research 194:169-173. Kumaran D (2008) Short-term memory and the human hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 28:3837-3838. Leasure JL, Jones M (2008) Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 156:456-465. Leuner B, Gould E, Shors TJ (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16:216-224. Linnarsson S, Willson CA, Ernfors P (2000) Cell death in regenerating populations of neurons in BDNF mutant mice. Brain research Molecular brain research 75:61-69. Machado RB, Tufik S, Suchecki D (2008) Chronic stress during paradoxical sleep deprivation increases paradoxical sleep rebound: association with prolactin plasma levels and brain serotonin content. Psychoneuroendocrinology 33:1211-1224. McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep medicine 8:302-330. McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:9687-9695. McDougall SJ, Widdop RE, Lawrence AJ (2004) Medial prefrontal cortical integration of psychological stress in rats. The European journal of neuroscience 20:2430-2440. Meerlo P, Sgoifo A, Suchecki D (2008) Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep medicine reviews 12:197-210. Mitchell JB, Laiacona J (1998) The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the rat. Behavioural brain research 97:107-113. Murray PS, Holmes PV (2011) An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. International journal of peptides 2011:654085. Nair D, Ramesh V, Gozal D (2012) Adverse cognitive effects of high-fat diet in a murine model of sleep apnea are mediated by NADPH oxidase activity. Neuroscience 227:361-369. Nichol KE, Parachikova AI, Cotman CW (2007) Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural brain research 184:124-132. O'Brien LM (2009) The neurocognitive effects of sleep disruption in children and adolescents. Child and adolescent psychiatric clinics of North America 18:813-823. Owens JA (2005) The ADHD and sleep conundrum: a review. Journal of developmental and behavioral pediatrics : JDBP 26:312-322. Palchykova S, Winsky-Sommerer R, Meerlo P, Durr R, Tobler I (2006) Sleep deprivation impairs object recognition in mice. Neurobiology of learning and memory 85:263-271. Patti CL, Zanin KA, Sanday L, Kameda SR, Fernandes-Santos L, Fernandes HA, Andersen ML, Tufik S, Frussa-Filho R (2010) Effects of sleep deprivation on memory in mice: role of state-dependent learning. Sleep 33:1669-1679. Paunio T, Korhonen T, Hublin C, Partinen M, Kivimaki M, Koskenvuo M, Kaprio J (2009) Longitudinal study on poor sleep and life dissatisfaction in a nationwide cohort of twins. American journal of epidemiology 169:206-213. Pietrelli A, Lopez-Costa J, Goni R, Brusco A, Basso N (2012) Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience 202:252-266. Porkka-Heiskanen T, Zitting KM, Wigren HK (2013) Sleep, its regulation and possible mechanisms of sleep disturbances. Acta Physiol (Oxf) 208:311-328. Ramesh V, Lakshmana MK, S B, Rao S, Raju TR, Kumar VM (1999) Alterations in monoamine neurotransmitters and dendritic spine densities at the medial preoptic area after sleep deprivation. Sleep research online : SRO 2:49-55. Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science 152:604-619. Sannino S, Russo F, Torromino G, Pendolino V, Calabresi P, De Leonibus E (2012) Role of the dorsal hippocampus in object memory load. Learn Mem 19:211-218. Silva RH, Abilio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, Medrano WA,Calzavara MB, Registro S, Andersen ML, Machado RB, Carvalho RC, RibeiroRde A, Tufik S, Frussa-Filho R (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46:895-903. Silvers JM, Harrod SB, Mactutus CF, Booze RM (2007) Automation of the novel object recognition task for use in adolescent rats. Journal of neuroscience methods 166:99-103. Singh R, Kiloung J, Singh S, Sharma D (2008) Effect of paradoxical sleep deprivation on oxidative stress parameters in brain regions of adult and old rats. Biogerontology 9:153-162. Smith CT, Conway JM, Rose GM (1998) Brief paradoxical sleep deprivation impairs reference, but not working, memory in the radial arm maze task. Neurobiology of learning and memory 69:211-217. Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017-1022. Suchecki D, Lobo LL, Hipolide DC, Tufik S (1998) Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. Journal of sleep research 7:276-281. Suchecki D, Tufik S (2000) Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiology & behavior 68:309-316. Tartar JL, Ward CP, McKenna JT, Thakkar M, Arrigoni E, McCarley RW, Brown RE, Strecker RE (2006) Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. The European journal of neuroscience 23:2739-2748. Utge S, Kronholm E, Partonen T, Soronen P, Ollila HM, Loukola A, Perola M, Salomaa V, Porkka-Heiskanen T, Paunio T (2011) Shared genetic background for regulation of mood and sleep: association of GRIA3 with sleep duration in healthy Finnish women. Sleep 34:1309-1316. Utge S, Soronen P, Partonen T, Loukola A, Kronholm E, Pirkola S, Nyman E, Porkka-Heiskanen T, Paunio T (2010) A population-based association study of candidate genes for depression and sleep disturbance. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 153B:468-476. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience 2:266-270. Wojtowicz JM, Kee N (2006) BrdU assay for neurogenesis in rodents. Nature protocols 1:1399-1405. Youngblood BD, Smagin GN, Elkins PD, Ryan DH, Harris RB (1999) The effects of paradoxical sleep deprivation and valine on spatial learning and brain 5-HT metabolism. Physiology & behavior 67:643-649. Youngblood BD, Zhou J, Smagin GN, Ryan DH, Harris RB (1997) Sleep deprivation by the 'flower pot' technique and spatial reference memory. Physiology & behavior 61:249-256. Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, Alkadhi K (2012) The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiology of disease 45:1153-1162. Zagaar M, Dao A, Levine A, Alhaider I, Alkadhi K (2013) Regular exercise prevents sleep deprivation associated impairment of long-term memory and synapticplasticity in the CA1 area of the hippocampus. Sleep 36:751-761. Zhang J, Veasey S (2012) Making sense of oxidative stress in obstructive sleep apnea: mediator or distracter? Frontiers in neurology 3:179. Zielinski MR, Davis JM, Fadel JR, Youngstedt SD (2013) Influence of chronic moderate sleep restriction and exercise training on anxiety, spatial memory, and associated neurobiological measures in mice. Behavioural brain research 250:74-80. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58666 | - |
| dc.description.abstract | 在現今繁忙的社會中,睡眠不足或被干擾的情況常是無可避免的。許多報告指出,缺乏睡眠會影響學習及記憶等認知功能。因此,尋找能預防睡眠剝奪(sleep
deprivation)所造成之腦部功能異常的對策,是非常重要的。而另一方面,運動可促進身體健康以及有益認知功能,是眾所皆知的。因此,我們想探討自主性運動 (voluntary exercise)是否可以預防睡眠剝奪後所造成之負面影響。本實驗使用出生後四週的雄性小鼠,這階段相似於人類的兒童到青少年時期。我們將小鼠分為少動及運動兩組。運動組小鼠的籠子裡放有轉輪,可讓小鼠自由地運動。少動組的籠內則無轉輪。飼養四週之後,兩組小鼠再各被分為正常睡眠組以及72 小時睡 眠剝奪組。因此,本實驗有個四組別:少動-正常睡眠組、少動-睡眠剝奪組、 運動-正常睡眠組以及運動-睡眠剝奪組。在開放空間(open field)的實驗當中,我們發現睡眠剝奪後,小鼠的活動力(locomotor activity)下降。然而,在新物體辨識(novel object recognition),這個與短期記憶有關的實驗中,少動-睡眠剝奪組的小鼠無法辨識新舊物體,但運動-睡眠剝奪組小鼠,則表現得與少動-正常睡眠組及運動-正常睡眠組相似,皆可以辨識新舊物體。這些結果顯示,四週的自主性運動,對於睡眠剝奪所造成的認知功能缺失有保護效果。另一方面,我們檢測氧化壓力指標谷胱甘肽(glutathione)、大腦衍生神經營養因子(brain-derived neurotrophy factor, BDNF)以及海馬迴中神經新生的情形,顯示睡眠剝奪會造成氧化壓力上升、大腦衍生神經營養因子與神經新生減少。最後,我們檢驗與辨識記憶功能有關的腦區中神經元的結構。結果發現,在少動-睡眠剝奪組小鼠的齒狀迴(dentate gyrus)中,顆粒細胞(granule cells)之樹突的複雜度(complexity),以及樹突棘(dendritic spines)的密度,較少動-正常睡眠組為低。在少動-睡眠剝奪組小鼠的中前額葉皮質(medial prefrontal cortex)中,也發現突棘密度減少。然而這些樹突結構結構上的異常,並未在運動-睡眠剝奪組被觀察到,這顯示四週的自主運動,亦在睡眠剝奪對樹突結構的損害上,有保護效果。總結來說,本研究結果顯示,自主性運動可以預防睡眠剝奪所造成之負面影響。 | zh_TW |
| dc.description.abstract | In our daily life, sleep deprivation (SD) or disturbances are somewhat inevitable.It is documented that sleep loss impairs cognitive functions such as learning and
memory. Finding ways to prevent SD-related brain dysfunction is important.Voluntary exercise, a well-known health-promoting practice, is beneficial in various aspects including cognitive functions. We therefore hypothesized that voluntary exercise could counteract the negative effects following SD. To test this hypothesis, postweaning male mice were group-housed in cages with or without running wheels as exercise and sedentary groups, respectively. After 4 weeks, mice in both groups were subjected to normal sleep (NS) or 72-hour SD paradigm. Four groups of mice,sedentary-normal sleep (SNS), sedentary-sleep deprivation (SSD), exercise-normal sleep (ENS), and exercise-sleep deprivation (ESD), were then examined with various tasks. The level of locomotor activity in a novel open field was affected by SD. In addiation, the performance of short-term memory evaluated in novel object recognition test was impaired in SSD mice, but not in ESD mice, indicating the protective effect of voluntary exercise. The levels of glutathione (GSH) and brain-derived neurotrophy factor (BDNF) as well as the activity of hippocampal neurogenesis were significant decreased in SSD group, but not in ESD group. Morphologically, the dendritic architecture of the granule neurons in the dentate gyrus(DG) and layer II/III pyramidal neurons in the medial prefrontal cortex (mPFC) which are involved in recognition memory function was examined. In mice of SSD group,the dendritic complexity of DG granule cells was significantly reduced than those in SNS group. The spine density of DG and mPFC neurons in SSD group was also decreased. However, these structure changes were not observed in mice of ESD group,indicating a protective effect of exercise on SD-induced dendritic deficits. Together, these results demonstrated preventive effects of voluntary exercise on SD-induced negativities in mice. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:24:43Z (GMT). No. of bitstreams: 1 ntu-103-R00b41007-1.pdf: 1654425 bytes, checksum: a42452d53ae097157466dcb113687dd5 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | CONTENTS
中文摘要............................................................................................................................ i Abstract ........................................................................................................................... iii Contents ........................................................................................................................... v List of Figures ................................................................................................................ vii List of Tables ................................................................................................................. vii Abbreviations ............................................................................................................... viii Introduction ..................................................................................................................... 1 Experimental design .................................................................................................................. 4 Materials and Methods. .................................................................................................. 5 I. Animals ................................................................................................................. 5 II. Sleep deprivation ................................................................................................... 5 III. Behavioral tests ..................................................................................................... 5 III-1. Open field ................................................................................................. 6 III-2. Novel object recognition test (NORT) ...................................................... 6 IV. Biochemical assay ................................................................................................. 6 IV-1. Corticosterone assay ................................................................................. 6 IV-2. Total glutathione assay .............................................................................. 7 IV-3. Catalase assay ............................................................................................ 7 IV-4. Western blot ............................................................................................... 8 V. Histology ............................................................................................................... 8 V-1. Golgi-Cox impregnation ............................................................................. 9 V-2. Immunohistochemistry ............................................................................... 9 VI. Statistical analysis ............................................................................................... 10 Results ............................................................................................................................ 11 I. Behavioral tests .................................................................................................... 11 I-1. Locomoter activity was affected by sleep deprivation ................................ 11 I-2. Impaired short-term memory in sleep-deprived mice ............................... 11 II. Biochemical analysis ........................................................................................... 12 II-1. Reduced total glutathione in SSD group ...................................................... 12 II-2. Dendritic structures of DG granule cells were affected by exercise and sleep deprivation ........................................................................................ 13 II-3. Levels of BDNF was reduced by sleep deprivation in the hippocampus ...... 13 III. Morphological analysis ....................................................................................... 13 III-1. Neurogenesis in the DG .............................................................................. 13 III-2. Dendritic structures of DG granule cells were affected by exercise and sleep deprivation ........................................................................................ 14 III-3. Spine density of DG granule cells was affected by exercise and sleep deprivation ................................................................................................. 14 III-4. Spine density of mPFC neurons was affected by exercise and sleep deprivation ................................................................................................. 15 Discussion....................................................................................................................... 16 Reference ....................................................................................................................... 43 | |
| dc.language.iso | en | |
| dc.subject | 大腦衍生神經營養因子 | zh_TW |
| dc.subject | 樹突棘 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 中前額葉皮質 | zh_TW |
| dc.subject | 齒狀迴 | zh_TW |
| dc.subject | 認知功能 | zh_TW |
| dc.subject | 神經新生 | zh_TW |
| dc.subject | medial prefrontal cortex | en |
| dc.subject | oxidative stress | en |
| dc.subject | BDNF | en |
| dc.subject | neurogenesis | en |
| dc.subject | dentate gyrus | en |
| dc.subject | dendrite | en |
| dc.subject | cognitive function | en |
| dc.subject | dendritic spine | en |
| dc.title | 自主性運動改善睡眠剝奪所造成之負面影響 | zh_TW |
| dc.title | Sleep Deprivation-Induced Negativities Are Prevented by Voluntary Exercise | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王培育,賴文崧,張芳嘉,李俊賢 | |
| dc.subject.keyword | 認知功能,氧化壓力,大腦衍生神經營養因子,神經新生,齒狀迴,中前額葉皮質,樹突棘, | zh_TW |
| dc.subject.keyword | cognitive function,,oxidative stress,BDNF,neurogenesis,dentate gyrus,dendrite,medial prefrontal cortex,dendritic spine, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
