請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58661
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃宇廷(Yu-tin Huang) | |
dc.contributor.author | Sheng-Sheng Cai | en |
dc.contributor.author | 蔡勝聖 | zh_TW |
dc.date.accessioned | 2021-06-16T08:24:29Z | - |
dc.date.available | 2020-07-27 | |
dc.date.copyright | 2020-07-27 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-13 | |
dc.identifier.citation | [1] L. Arnaudon, R. Assmann, A. Blondel, B. Dehning, G.E. Fischer, P. Grosse-Wiesmann, A. Hofmann, R. Jacobsen, J.P Koutchouk, J. Miles, R. Olsen, M. Placidi, R. Schmidt, and J. Wenninger. Effects of terrestrial tides on the LEP beam energy. Technical report, CERN SN, 1994. [2] Adrian C. Melissinos. The Eect of the Tides on the LIGO Interferometers. In On re-cent developments in theoretical and experimental general relativity, astrophysics and relativistic field theories. Proceedings, 12th Marcel Grossmann Meeting on General Relativity, Paris, France, July 12-18, 2009. Vol. 1-3, pages 1718{1720, 2010. [3] R. A. Brooker and T. W. Olle. Apsidal-motion constants for polytropic models. Monthly Notices of the Royal Astronomical Society, 115(1):101-106, 1955. [4] Eanna E. Flanagan and Tanja Hinderer. Constraining neutron star tidal Love numbers with gravitational wave detectors. Phys. Rev., D77:021502, 2008. [5] Alar Toomre and Juri Toomre. Galactic bridges and tails. Astrophys. J., 178:623. [6] W. H. Press and S. A. Teukolsky. On formation of close binaries by two-body tidal capture. Astrophys. J., 213:183{192, April 1977. [7] A. E. H. Love, Some Problems of Geodynamics (Cornell University Library, 1911). [8] T. Damour and A. Nagar, Relativistic tidal properties of neutron stars, Phys. Rev. D80 (2009) 084035, [0906.0096]. [9] T. Binnington and E. Poisson, Relativistic theory of tidal Love numbers, Phys. Rev. D80 (2009) 084018, [0906.1366]. [10] B. Kol and M. Smolkin, Black hole stereotyping: Induced gravito-static polarization, JHEP 02 (2012) 010, [1110.3764]. [11] V. Cardoso, E. Franzin, A. Maselli, P. Pani and G. Raposo, Testing strong-field grav-ity with tidal Love numbers, Phys. Rev. D95 (2017) 084014, [1701.01116]. [12] E. Poisson, Tidal deformation of a slowly rotating black hole, Phys. Rev. D91 (2015) 044004, [1411.4711]. [13] P. Landry and E. Poisson, Tidal deformation of a slowly rotating material body. Ex-ternal metric, Phys. Rev. D91 (2015) 104018, [1503.07366]. [14] P. Pani, L. Gualtieri and V. Ferrari, Tidal Love numbers of a slowly spinning neutron star, Phys. Rev. D92 (2015) 124003, [1509.02171]. [15] R. A. Porto, The Tune of Love and the Nature(ness) of Spacetime, Fortsch. Phys. 64 (2016) 723–729, [1606.08895]. [16] M. H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B266 (1986) 709–736. [17] S. Cai and K.-D. Wang, Non-vanishing of tidal Love numbers, 1906.06850. [18] C. M. Will, Gravity: Newtonian, Post-Newtonian, and General Relativistic, pp. 9–72. Springer International Publishing, Cham, 2016. 10.1007/978-3-319-20224-22: [19] K. S. Thorne, Multipole Expansions of Gravitational Radiation, Rev. Mod. Phys. 52 (1980) 299–339. [20] X. H. Zhang, Multipole expansions of the general-relativistic gravitational field of the external universe, Phys. Rev. D34 (1986) 991–1004. [21] K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 (1916) 189–196, [physics/9905030]. [22] I. Z. Rothstein, Progress in effective field theory approach to the binary inspiral problem, Gen. Rel. Grav. 46 (2014) 1726. [23] S. Chakrabarti, T. Delsate and J. Steinhoff, New perspectives on neutron star and black hole spectroscopy and dynamic tides, 1304.2228. [24] S. Chakrabarti, T. Delsate and J. Steinhoff, Effective action and linear response of compact objects in Newtonian gravity, Phys. Rev. D88 (2013) 084038, [1306.5820]. [25] W. D. Goldberger and I. Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D73 (2006) 104030, [hep-th/0511133]. [26] S. Mano, H. Suzuki and E. Takasugi, Analytic solutions of the Regge-Wheeler equation and the postMinkowskian expansion, Prog. Theor. Phys. 96 (1996) 549–566, [gr-qc/9605057]. [27] G. ’t Hooft and M. Veltman, One-loop divergencies in the theory of gravitation, Annales de l’I.H.P. Physique théorique 20 (1974) 69–94. [28] V . Cardoso, M. Kimura, A. Maselli and L. Senatore, Black Holes in an Effective Field Theory Extension of General Relativity, Phys. Rev. Lett. 121 (2018) 251105, [1808.08962]. [29] J. Steinhoff, T. Hinderer, A. Buonanno and A. Taracchini, Dynamical Tides in General Relativity:Effective Action and Effective-One-Body Hamiltonian, Phys. Rev. D94 (2016) 104028, [1608.01907]. [30] R. F. Penna, Near-horizon Carroll symmetry and black hole Love numbers, 1812.05643. [31] R. H. Price and K. S. Thorne, Membrane Viewpoint on Black Holes: Properties and Evolution of the Stretched Horizon, Phys. Rev. D33 (1986) 915–941. [32] M.-Z. Chung, Y .-T. Huang, J.-W. Kim and S. Lee, The simplest massive S-matrix: from minimal coupling to Black Holes, JHEP 04 (2019) 156, [1812.08752]. [33] A. Guevara, A. Ochirov and J. Vines, Scattering of Spinning Black Holes from Exponentiated Soft Factors, JHEP 09 (2019) 056, [1812.06895]. [34] K. Yagi, L. C. Stein, N. Y unes and T. Tanaka, Post-Newtonian, Quasi-Circular Bi-nary Inspirals in Quadratic Modified Gravity, Phys. Rev. D85 (2012) 064022, [1110.5950]. [35] A. Maselli, P . Pani, V . Cardoso, T. Abdelsalhin, L. Gualtieri and V . Ferrari, Prob-ing Planckian corrections at the horizon scale with LISA binaries, Phys. Rev. Lett. 120 (2018) 081101, [1703.10612]. [36] A. Maselli, P . Pani, V . Cardoso, T. Abdelsalhin, L. Gualtieri and V . Ferrari, From micro to macro and back: probing near-horizon quantum structures with gravitational waves, Class. Quant. Grav. 36 (2019) 167001, [1811.03689]. [37] V . Cardoso and P . Pani, Testing the nature of dark compact objects: a status report, Living Rev. Rel. 22 (2019) 4, [1904.05363]. [38] M. V allisneri, Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects, Phys. Rev. D77 (2008) 042001, [gr-qc/0703086]. [39] P . Pani and A. Maselli, Love in Extrema Ratio, Int. J. Mod. Phys. D28 (2019) 1944001, [1905.03947]. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58661 | - |
dc.description.abstract | 在每年的農曆八月十五,發生在杭州灣的“錢塘江大潮”總是吸引著無數遊客,而這一自然現象產生的原因就是由於月球對海水產生的潮汐力。在牛頓力學中,物體受到潮汐力而產生的形變程度是由潮汐勒夫數(Tidal Love Number)這一無量綱的耦合常數來描述的。而潮汐勒夫數這一概念還可以被推廣到相對論的框架下。有趣的是,一系列的研究結果表明,四維時空下的施瓦西黑洞的潮汐勒夫數恰好為零。這個神奇的結果讓我們有了以下問題:四維時空下的施瓦西黑洞是否存在著一個隱藏的對稱性,從而迫使它的潮汐勒夫數為零? 基於施瓦西黑洞的潮汐勒夫數為零這一神奇的事實,與愛因斯坦重力理論只是有效場理論,即在系統的能量足夠高的情形下愛因斯坦重力理論需要添加一些高階修正項。我們在這篇文章中分析了在加入高階修正項後的黑洞近似解,並且在新的黑洞解的背景下做線性的微擾,在適當的邊界條件下提取出新的黑洞解的潮汐勒夫數。結果表明,此時的潮汐勒夫數並不等於零,因此使得原本的廣義相對論中施瓦西黑洞的潮汐勒夫數等於零這一結果便更加撲朔迷離。 | zh_TW |
dc.description.abstract | On the 15th of August in lunar calendar, the magnificent natural landscape of the Qiantang River Tide always attracts countless tourists. And the reason for this magical phenomenon is the tidal forces of the Earth-Moon interaction. In Newtonian gravity, the tidal deformability of an astronomical body is measured by its tidal Love numbers, dimensionless coupling constants which depend on the body’s composition. The gravitational Love numbers characterize the body’s response to the tidal field through the change in its gravitational potential. The gravitational Love numbers were promoted to a relativistic setting by Damour and Nagar, and Binnington and Poisson. Interestingly, in general relativity (GR), TLNs of black holes (BHs) are precisely zero. This intriguing result motivate us to analyze this property under more general scenarios. In this thesis we analyze black holes solutions under R^3-type corrections, which is the leading correction induced by quantum corrections in four-dimensions. Our methodology starts with the perturbation of our BH solutions using a linear perturbation formalism. We then impose the Regge-Wheeler gauge and solve the perturbed field equations of the theory using appropriate boundary conditions, both at the event horizon and infinity. From the resulting solutions, we identify the induced multipole moments and the tidal fields which allow us to compute the TLNs. Finally, we showed that perturbations around this black hole background will lead to non-zero tidal Love number (TLN). This further accentuates the “unnaturalness” of the vanishing TLN for Schwarzschild black hole under Einstein-Hilbert action. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:24:29Z (GMT). No. of bitstreams: 1 U0001-1107202014372600.pdf: 1350645 bytes, checksum: 1f280203626a349808dd48f58be0dc4a (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Contents 致謝 i 摘要 ii Abstract iii Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Background 2 1.3. Thesis Outline 4 Chapter 2. Tidal Love Numbers 6 2.1. TLNs in Newtonian Gravity 6 2.1.1. Tidal Potential 6 2.1.2. Induced Perturbations and External Problem 8 2.2. TLNs in Relativistic Theory 11 2.2.1. Multipole Moments of a Relativistic Object 11 2.2.2. Relativistic Tidal Field Moments 13 2.2.3. Asymptotic Spacetime of a Deformed Body 14 Chapter 3. TLNs of BH in General Relativity 16 3.1. Linear Spacetime Perturbation 16 3.2. Linear Perturbation in Minkowski Space 17 3.3. TLNs of Schwarzschild BH in D=4 19 Chapter 4. TLNs of BH in Modified Gravity 24 4.1. From TLNs to Effective Field Theory 24 4.2. The Perturbed Black Hole Solution 28 4.3. The First Order Perturbation of TLNs 30 4.3.1. Even-Parity Sector 31 4.3.2. Odd-Parity Sector 34 Chapter 5. Conclusion 37 Bibliography 40 | |
dc.language.iso | en | |
dc.title | 黑洞的非零勒夫係數 | zh_TW |
dc.title | Nonzero Tidal Love Number of Black Hole | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賀培銘(Pei-Ming Ho),陳恒榆(Heng-Yu Chen) | |
dc.subject.keyword | 潮汐勒夫數,施瓦西黑洞,量子修正,廣義相對論, | zh_TW |
dc.subject.keyword | Tidal Love Numbers,Black holes,General Relativity,General Relativity, | en |
dc.relation.page | 43 | |
dc.identifier.doi | 10.6342/NTU202001440 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-13 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1107202014372600.pdf 目前未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。