Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐濟泰(Jih-Tay Hsu)
dc.contributor.authorYi-Chen Chenen
dc.contributor.author陳怡蓁zh_TW
dc.date.accessioned2021-06-16T08:24:12Z-
dc.date.available2016-03-08
dc.date.copyright2014-03-08
dc.date.issued2014
dc.date.submitted2014-01-22
dc.identifier.citationAssociation of O cial Analytical Chemists. 1990. O cial Methods of Analysis, Association of O cial Analytical Chemists, Arlington, VA, 15th edition.
Braun, T. and H. H. Arnold. 1995. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO Journal 14:1176-1186.
Braun, T., M. A. Rudnicki, H.-H. Arnold, and R. Jaenisch. 1992. Target inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369-382.
Chen, Y. C., C. C. Chien, C. Y. Lou Chyr, J. T. Hsu, E.-C. Lin, and P. H. Wang. 2012. Canonical correlation analysis of body conformation and carcass traits in Taiwan black pigs (in Chinese). Journal of the Agriculture Association of Taiwan 13:318-335.
Chen, Y. C., J. T. Hsu, E.-C. Lin, C. C. Chien, and P. H. Wang. 2006. The genetic variation of myogenin and myf6 genes in exotic pig breeds and Taiwan black pigs (poster). Journal of the Chinese Society of Animal Science 35(Suppl.):133.
Cho, E. S., D. H. Park, B.-W. Kim, W. Y. Jung, E. J. Kwon, and C. W. Kim. 2009. Association of GHRH, H-FABP and MYOG polymorphisms with economic traits in pigs. Asian Australasian Journal of Animal Science 22:307-312.
Cie slak, B. D., W. Kapela nski, T. Blicharski, and M. Pierzchal. 2000. Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs. Journal of Animal Breeding and Genetics 117:43-55.
Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts broblasts to myoblasts. Cell 51:987-1000.
Dwyer, C. M., J. M. Fletcher, and N. C. Stickland. 1993. Muscle cellularity and postnatal growth in the pig. Journal of Animal Science 71:3339-3343.
Dwyer, C. M. and N. C. Stickland. 1991. Sources of variation in myo fibre number within and between litters of pigs. Animal Production 52:527-533.
Ernst, C. W., D. A. Vaske, R. G. Larson, and M. F. Rothschild.1993. Rapid communication: MspI restriction fragment length polymorphism at the swine myogenin locus. Journal of Animal Science 71:3479.
Geesink, G. H., A. D. Bekhit, and R. Bickersta e. 2000. Rigor temperature and meat quality characteristics of lamb longissimus. Journal of Animal Science 78:2842-2848.
Gerbens, F., A. J. van Erp, F. L. Harders, F. J. Verburg, T. H. Meuwissen, J. H. Veerkamp, and M. F. W. te Pas. 1999. E ect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. Journal of Animal Science 77:846-852.
Hamilton, S., R. J. Hamilton, and P. A. Sewell. 1992. Lipid Analysis: A Practical Approach, chapter Extraction of lipids and derivative formation, pp. 13-64, IRL Press, Oxford, UK.
Handel, S. E. and N. C. Stickland. 1987. Muscle cellularity and birth weight. Animal Production 44:311-317.
Handel, S. E. and N. C. Stickland. 1988. Catch-up growth in pigs: a relationship with muscle cellularity. Animal Production 47:291-295.
Hinterberger, T. J., D. A. Sassoon, S. J. Rhodes, and S. F. Konieczny. 1991. Expression of the muscle regulatory factor MRF4 during somite and skeletal myo ber development. Developmemtal Biology 147:144-156.
Honikel, K. O. 1987. Influence of chilling on meat quality attributes of fast glycolysing pork muscles. Current Topics in Veterinary Medicine and Animal Science 38:273-283.
Houba, P. H. J. and M. F. W. te Pas. 2004. Muscle Development of Livestock Animals - Physiology, Genetics and Meat Quality, chapter 10. The Muscle Regulatory Factors Gene Family in Relation to Meat Production, pp. 201-223, CAB International, Massachusetts, USA.
Jin, X., J.-G. Kim, M.-J. Oh, H.-Y. Oh, Y.-W. Sohn, X. Pian, J. L. Yin, S. Beck, N. Lee, J. Son, H. Kim, C. Yan, J. H. Wang, Y.-J. Choi, and K. Y. Whang. 2007. Opposite roles of MRF4 and MyoD in cell proliferation and myogenic di erentiation. Biochemical and biophysical research communications 364:476-482.
Kapela nski, W., S. Grajewska, J. Kuryl, M. Bocian, J. Wyszy nska-Koko, and P. Urba nski. 2005. Polymorphism in coding and on-coding regions of the MyoD gene family and meat quality in pigs. Foliz Biologica (Krak ow) 53:45-49.
Kitzmann, M., G. Carnac, M. Vandromme, M. Primig, N. J. C. Lamb, and A. Fernandez. 1998. The muscle regulatory factors MyoD and Myf-5 undergo distinct cell cycle-speci c expression in muscle cells. The Journal of Cell Biology 142:1447-1459.
Knapp, J. R., J. K. Davie, A. Myer, E. Meadows, E. N. Olson, and W. H. Klein. 2006. Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Developmemt 133:601-610.
Knoll, A., M. Nebola, J. Dvorak, and S. Cepica. 1997. Detection of a DdeI PCR-RFLP within intron 1 of the porcine MYOD1 (MYF3) locus. Animal Genetics 28:321.
Lin, W.-H., J. Gao, K.-F. Chen, N.-S. Ding, H.-S. Ai, Y.-M. Guo, L. Li, and L.-S. Huang. 2003. Polymorphism analysis oporcine myogenin gene by PCR-RFLP (in Chinese). Yi Chuan (Hereditas) 25:22-26.
Ma, H.-M., X.-C. Liu, Q.-S. Shi, S.-Q. Huang, C.-Q. He, and J. Jiang. 2005. PCR-RFLP analysis of 3'-UTR of myogenin gene in pigs (in Chinese). Journal of Agricultural Biotechnology. 13:493-496.
Montarras, D., C. Lindon, C. Pinset, and P. Domeyne. 2000. Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects. Biology of the Cell 92:565-572.
Moss, F. P. and C. P. Leblond. 1971. Satellite cells as the source of nuclei in muscles of growing rats. The Anatomical Record 170:421-435.
Nelson, D. L. and M. M. Cox. 2000. Lehninger Principles of Biochemistry, chapter 7. Protein Function, pp. 203-242, Worth Publishers, New York, USA, 3rd edition.
Olson, E. N., M. Perry, and R. A. Schulz. 1995. Regulation of muscle di erentiation by the MEF2 family of MADS box transcription factors. Developmemtal Biology 172:2-14.
Pownall, M. E., M. K. Gustafsson, and C. P. Emerson, Jr. 2002. Myogenic regulatory factors and the speci cation of muscle progenitors in vertebrate embryos. Annual Review of Cell and Developmental Biology 18:747-783.
Rawls, A., M. R. Valdez, W. Zhang, J. Richardson, W. H. Klein, and E. N. Olson. 1998. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Developmemt 125:2349-2358.
Rehfeldt, C., I. Fiedler, and N. C. Stickland. 2004. Muscle Development of Livestock Animals - Physiology, Genetics and Meat Quality, chapter 1. Number and Size of Muscle Fibres in Relation to Meat Production, pp. 1{38, CAB International, Massachusetts, USA.
Rhodes, S. J. and S. F. Konieczny. 1989. Identi cation of MRF4: a new member of the muscle regulatory factor gene family. Genes & development 3:2050-2061.
Rudnicki, M. A., T. Braun, S. Hinuma, and R. Jaenisch. 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic bHLH gene Myf-5 and results in apparently muscle development. Cell 71:383-390.
Rudnicki, M. A., P. N. Schnegelsberg, R. H. Stead, T. Braun, H.-H. Arnold, and R. Jaenisch. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351-1359.
Rybarczyk, A., A. Pietruszka, E. Jacyno, J. Dvo r ak, T. Karamucki, and M. Jakubowska. 2010. Association of RYR1 and MYOG genotype with carcass and meat quality traits in grower- nisher pigs. Acta Veterinaria Brno 79:243-248.
SAS Institute Inc. 2011. SAS/STAT® 9.3 User's Guide, SAS Institute Inc., Cary, NC, USA.
Schultz, E. 1974. A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. The Anatomical Record 180:589-595.
Shen, T. F., M. S. Lin, H. W. Wei, and S. F. Hsu. 1999. Handbook of Livestock Practice, Hua Hsiang Yuan Press, Taipei, Taiwan.
Soumillion, A., J. H. Erkens, J. A. Lentra, G. Rettenberger, and M. F. W. te Pas. 1997. Genetic variation in the porcine myogenin gene locus. Mammalian Genome 8:564-568.
Staun, H. 1972. The nutritional and genetic in uence on number and size of muscle bres and their response to carcass quality in pigs. World Review of Animal Production 3:18-26.
Stickland, N. C., S. Bayol, C. Ashton, and C. Rehfeldt. 2004. Muscle Development of Livestock Animals - Physiology, Genetics and Meat Quality, chapter 3. Manipulation of Muscle Fiber Number During Prenatal Development, pp. 69{82, CAB International, Massachusetts, USA.
Stickland, N. C. and G. Goldspink. 1973. A possible indicator muscle for the bre content and growth characteristics of porcine muscle. Animal Production 16:135-146.
Stupka, R., J. Citek, M. Sprysl, M. Okrouhla, and L. Brzobohaty. 2012. The impact of MYOG, MYF6 and MYOD1 genes on meat quality traits in crossbred pigs. African Journal of Biotechnology 11:15405-15409.
te Pas, M. F. W., A. Soumillion, F. L. Harders, F. J. Verburg, T. J. van den Bosch, P. Galesloot, and T. H. Meuwissen. 1999. Influences of myogenin genotypes on birth weight, growth rate, carcass weight,backfat thickness, and lean weight of pigs. Journal of Animal Science 77:2352-2356.
te Pas, M. F. W., F. J. Verburg, C. L. Gerritsen, and K. H. de Greef. 2000. Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. Journal of Animal Science 78:69-77.
te Pas, M. F. W. and A. H. Visscher. 1994. Genetic regulation of meat production by embryonic muscle formation{a review. Journal of Animal Breeding and Genetics 111:404-412.
Urba nski, P. and J. Kuryl. 2004a. New SNPs in the coding and 5' flanking
regions of porcine MYOD1 (MYF3) and MYF5 genes. Journal of Applied Genetics 45:325-330.
Urba nski, P. and J. Kuryl. 2004b. Two new SNPs within exon 1 of the porcine MYOD1 (MYF3) gene and their frequencies in chosen pig breeds and lines. Journal of Animal Breeding and Genetics 121:204-208.
Urba nski, P., M. Pierzchal, M. Kamyczek, M. R o_zycki, and J. Kuryl. 2006. Relations between the polymorphism in the coding and 5'-flanking regions of the porcine MYOD1 and MYF5 genes and productive traits in pigs. Journal of Animal and Feed Sciences 15:225-235.
Verner, J., P. Humpol cek, and A. Knoll. 2007. Impact of MYOD family genes on pork traits in Large White and Landrace pigs. Journal of Animal Breeding and Genetics 124:81-85.
Vykoukalov a, Z., A. Knoll, J. Dvo r ak, G. A. Rohrer, and S. Cepica. 2003. Linkage and radiation hybrid mapping of the porcine MYF6 gene to chromosome 5. Animal Genetics 34:238-240.
Warriss, P. D. 2010. Meat science: an introductory text, chapter 12. Measuring the Composition and Physical Characteristics of Meat, pp. 179-193, CAB International, Oxford, UK, 2nd edition.
Weintraub, H. 1993. MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241-1244.
Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. K. Blackwell, D. Turner, R. Rupp, S. Hollenberg, Y. Zhuang, and A. Lassar. 1991. The myoD gene family: Nodal point during speci cation of the muscle cell lineage. Science 251:761-766.
Wierbicki, E. and F. E. Deatherage. 1958. Water content of meats, determination of water-holding capacity of fresh meats. Journal of Agricultural and Food Chemistry 6:387-392.
Wigmore, P. M. and D. Evans, Jr. 2002. Molecular and cellular mechanisms involved in the generation of ber diversity during myogenesis. International Review of Cytology 216:175-232.
Wigmore, P. M. and N. C. Stickland. 1983. Muscle development in large and small pig fetuses. Journal of Anatomy 137:235-245.
Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607-617.
Zhang, W., R. R. Behringer, and E. N. Olson. 1995. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes & development 9:1388-1399.
Zhu, L. and X.-W. Li. 2005. The genetic diversity and genetic e ect of myf-6 gene in di erent pig breeds (in Chinese). Yi Chuan (Hereditas) 27:887-892.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58655-
dc.description.abstract本論文包括兩部分的試驗,其一為針對臺灣黑毛豬所進行的試驗分析,另一部分則為針對法國當地豬種 Basque 豬及法國大白豬所進行的試驗分析。
自 2005 年全面開放國外畜禽產品進口後,臺灣黑毛豬在臺灣肉品市場中成為具有競爭力的一個品項。「臺灣黑毛豬」指的身被黑毛的豬隻,而非指單一品種或品系;因此,臺灣黑毛豬的特性需要藉由科學方法有系統地進行相關研究;此部份的試驗採用了 500 頭臺灣黑毛豬 (收集時間自 2006 年至 2008 年) 。利用微衛星標幟分析所得之結果可將臺灣黑毛豬與其他純種豬隻群集化 (cluster);相對於中國系豬種,臺灣黑毛豬與歐洲系豬種的親緣關係較近。此結果說明在臺灣黑毛豬的育成過程中,歐洲系豬種最常被用來進行生長 (例如:生長速率及飼料效率) 及屠體性狀 (例如瘦肉率) 的遺傳改進,特別是杜洛克品種。在臺灣,豬隻拍賣及買賣主要是根據對豬隻外表的主觀判定,使得體型特徵在黑毛豬育種中顯得非常重要。本試驗以典型相關分析找出七項體型測量值與屠體性狀間的關聯性,發現體高、胸深及胸圍與屠體重及屠體背脂厚度的關聯性最高;然而,更多的屠體及肉質性狀應該一同列入分析,以提高體型測量值對於預測屠體性狀之準確度。肌肉生成過程是決定產肉量及肉質的關鍵步驟,主要是由肌肉調控因子 (MRF) 基因家族所控制。在 myogenin 及 myf6 基因與臺灣黑毛豬及 DL 豬隻性能表現之相關性分析結果中發現,在以臺灣黑毛豬及 DL 豬隻之屠體組成為目標的育種計畫下,位在 myogenin 基因上的 MspI 限制酵素切位及位在 myf6 基因上的 BseRI 限制酵素切位具有作為候選基因的潛力 (P<0.1);然而,此二個變異點可能會因品種或族群的不同 (臺灣黑毛豬 vs. DL 豬隻) 以及性別的不同 (DL 豬隻 --- 閹公豬 vs. 女豬) 而對於表型有不同程度的影響。
第二部分的試驗是以飼養在不同型畜舍的法國當地的 Basque 豬種 (B) 及法國大白豬 (LW) 進行性能比較,收集的性狀包括生長、屠前血液生化值、肌纖維組成、肉的化學組成、脂肪酸組成、物理性質地分析與脂肪/蛋白質氧化程度分析及品評。畜舍類型分成三種,第一種是傳統型 (C)、第二種為替代型 (L)、以及第三種為粗放型 (E),在約兩公頃的戶外空間進行放牧,並有屋舍以供遮蔽。因此,本試驗可分為五組:BC、BL、BE、LWC 及 LWL,每組的樣本數均為 10。結果顯示,雖然「品種」為影響性能表現的主要因子 (P<0.05), L 型畜舍對於豬隻的性能表現並無顯著的不良影響;因此,在動物福利的考量之下,L 型畜舍可以應用在法國 Basque 豬及大白豬的生產系統中。相反地,飼養在 E 型畜舍的 Basque 豬隻在生長性能的表現較差,且其肉質較硬,顯示出粗放型態容易受到許多環境因子的影響而不易管理,包括氣候、溫度及飼料供給與食物採集。另一方面,為找出各性狀間的關聯性,利用以偏相關 (partial correlation,又稱為淨相關) 為基礎的 Graphic Gaussian model (GGM) 建構出一個綜觀的網絡 (overview network),並以 R 統計軟體中的 GeneNet 套組進行分析。所得之網絡圖像顯示兩個主要結果:第一個是利用綜觀的網絡可以呈現整體目標性狀間的直接關係,包括與已知性狀間相關性相同或是不同的結果;第二個則是由特定目標性狀為節點構成的次網絡 (subnetwork) 可以用來篩選出較具有重要性的相關性狀。此網絡分析的結果可以提供後續的試驗假設及實驗驗證之參考依據。
對於臺灣黑毛豬與法國本地豬種 Basque 而言,仍然有許多品種特性需要藉由科學方法定義及證明,例如營養需求及繁殖表現。性能改良及妥善利用其特殊性是未來進行臺灣黑毛豬相關研究的重要課題。從動物福利以及經濟的觀點綜合來看,粗放行的飼養方式對於本地豬種不見得是最佳的飼養環境;此外;無論是商業豬種 (例如,法國大白豬) 或是本地豬種 (例如,Basque 豬種),如何在豬隻生產性能與其動物福利之間取得平衡將會是未來關注的研究方向之一。
zh_TW
dc.description.abstractTwo parts of experiments are included in the present dissertation: one is on the Taiwan black pig, and the other is on French Basque and French Large White breeds.
Taiwan black pig (TBP) has competitiveness in the meat market in Taiwan under the pressure of the import of livestock and poultry products since 2005. As 'Taiwan black pig' is a general term of pigs covered with black hair, the characteristics of TBP have to be scientifically and systematically determined. The present work collected 500 TBP in the commercial slaughter plant during 2006--2008. Microsatellite markers were used to cluster TBP and other purebred pigs on the basis of Nei's genetic distance, and the result indicated that TBP in the pork market was more similar to the European than Chinese breeds. This finding coincided with the fact that the European breeds, especially the Duroc breed, were the most often used to improve the growth performance (e.g., higher growth rate and better feed efficiency) and carcass quality (e.g., higher lean percentage) of TBP in Taiwan. In Taiwan, the auction and the trading of pigs are carried out according to subjectively appearance judgment, which makes the body conformation characteristics standing out in breeding TBP. By canonical correlation analysis between the seven measurements of body conformation and carcass traits, body height, chest depth and chest circumference turned out to be the major parameters related to carcass weight and backfat thickness. However, more items of carcass and meat quality traits are needed for examining the correlation strength of these parameters in the future. Myogenesis is an important process in determining the quality and quantity of meat production, which is mainly regulated by the muscle regulatory factor (MRF) gene family. Two MRF family genes --- myogenin and myf6, were included in the genetic association study in the TBP and the commercial Duroc×Landrace (DL) pigs. The results revealed that the MspI site at the myogenin gene and the BseRI site at the myf6 gene had potential to be candidate genes in the breeding of the TBP and the DL pigs to improve carcass composition (P<0.1). Nevertheless, those two sites were breed- or population-dependent (TBP vs. DL pigs) and sex-dependent (castrated male vs. female DL pigs).
In the second part, two genetically distant breeds, French Basque (B) and French Large White (LW) pigs, were used to investigate the effects of breed and housing system on production performance traits, including growth, slaughter reactivity, muscle fiber composition, chemical and fatty acid composition, technological quality and lipid/protein oxidation of meat and sensory evaluation. The housing systems were the conventional (C), alternative (L) and extensive (E); thus, there were five groups of treatments --- Basque pigs in three types of housing systems and Large White pigs in C and L types of housing systems (10 pigs/each group) in the experiment. Although the breed effect was the major factor affecting production performance traits (P<0.05), no adverse effect of the L system on production performance indicated that the L system can be used in pig production of the Basque and the Large White breeds from the welfare-oriented point of view. Inferior growth performance and tougher meat of the Basque pigs in free-range rearing system indicated disadvantages in environmental and management factors, such as climate, ambient temperature and feeding regime. Additionally, the same data set was used to infer the direct interactions using a shrinkage approach based on the graphic Gaussian models (GGMs) through partial correlation; the R-package GeneNet was applied to construct the network. The major results revealed: (1) an overview network presented the direct connections of investigated variables through partial correlation estimations, where some were similar to or different from the known correlations between those variables; and (2) the extracted subnetwork with interested variables filtered out the more important related variables. The most needed validation of future work can be identified according to the results of networks.
For both TBP and the French Basque breed, there are still a lot of breed-characteristics needed to be scientifically elucidate, such as nutrition requirement and reproduction performance. Performance improvement and well-utilization of the unique characteristics are the major targets in the future studies of TBP. From the welfare-oriented and economic points of view, the extensive rearing system may not always be the most suitable to the native pig breeds; additionally, a balance between production performance and animal welfare should be considered for both conventional breeds (e.g., Large White pig) and local breeds (e.g., Basque pig).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:24:12Z (GMT). No. of bitstreams: 1
ntu-103-D96626004-1.pdf: 4236987 bytes, checksum: 8a0563e02b6ad92ed6fa292af3f4917c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
Acknowledgments i
Abstract iii
摘要 vii
Resume xi
I Taiwan Black Pig 1
1 Introduction to Taiwan Black Pig 3
1.1 The development of Taiwan black pig . . . . . . . . . . 5
1.1.1 Local pig breeds . . . . . . . . . . . . . . . . . . 7
1.1.2 Synthetic pig lines . . . . . . . . . . . . . . . . 12
1.2 Objectives of the present research . . . . . . . . . . . . 23
2 Microsatellite Analysis of Taiwan Black Pig 29
2.1 Phylogenetic analysis . . . . . . . . . . . . . . . . . . . 30
2.2 Microsatellite markers . . . . . . . . . . . . . . . . . . 34
2.3 Parameters of population genetics . . . . . . . . . . . . 36
2.3.1 The heterozygosity and xation index . . . . . . 36
2.3.2 Genetic distance . . . . . . . . . . . . . . . . . 41
2.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Article: Investigation of genetic relationships among
Taiwan black pigs and other pig breeds in Taiwan based
on microsatellite markers . . . . . . . . . . . . . . . . . 45
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 61
3 Body Conformation Evaluation of Taiwan Black Pig 65
3.1 Body conformation evaluation in Taiwan . . . . . . . . 65
3.2 Canonical correlation analysis . . . . . . . . . . . . . . 67
3.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Materials and Methods . . . . . . . . . . . . . . . . . . 72
3.4.1 Animals . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Body conformation measurements . . . . . . . . 73
3.4.3 Carcass traits collection . . . . . . . . . . . . . 73
3.4.4 Statistical analysis . . . . . . . . . . . . . . . . 73
3.5 Results and Discussion . . . . . . . . . . . . . . . . . . 76
3.5.1 Comparison of slaughter weight and body conformation
between farms . . . . . . . . . . . . . 76
3.5.2 Ideal type of body conformation . . . . . . . . . 78
3.5.3 Pearson's correlation between body conformation
and carcass traits . . . . . . . . . . . . . . 80
3.5.4 Canonical correlation analysis between body conformation
and carcass traits . . . . . . . . . . . 82
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.7 Article: Canonical Correlation Analysis of Body Conformation
and Carcass Traits in Taiwan Black Pigs (in
Chinese) . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4 Variations of Myogenic Genes in Taiwan Black Pig and
the Commercial Crossbred Duroc×Landrace Pig 117
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1.1 Skeletal muscle tissue . . . . . . . . . . . . . . . 117
4.1.2 Muscle regulatory factor gene family . . . . . . 119
4.1.3 Relationship between MRF gene family and pig
carcass traits . . . . . . . . . . . . . . . . . . . 124
4.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3 Materials and Methods . . . . . . . . . . . . . . . . . . 128
4.3.1 Animals . . . . . . . . . . . . . . . . . . . . . . 128
4.3.2 Genomic DNA isolation and genotyping . . . . 129
4.3.3 Trait collection for the association analysis . . . 132
4.3.4 Statistical analysis . . . . . . . . . . . . . . . . 135
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.4.1 Genotype and allele frequencies . . . . . . . . . 138
4.4.2 Eect of the MspI site in the myogenin gene . . 138
4.4.3 Eect of the AvaI site in the myf6 gene . . . . 140
4.4.4 Eect of the BseRI site in the myf6 gene . . . . 141
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 155
II French Basque and Large White Pigs 165
5 Introduction to Basque and French Large White Pigs 167
5.1 Pig breeds in France . . . . . . . . . . . . . . . . . . . 168
5.1.1 Large White breed . . . . . . . . . . . . . . . . 169
5.1.2 Pie Noire du Pays Basque breed . . . . . . . . . 171
5.2 Comparison between Basque and Large White breeds . 172
5.3 Objectives of the present research . . . . . . . . . . . . 176
6 Performance Comparisons between Basque and Large
White Pigs 179
6.1 Housing systems in pig production . . . . . . . . . . . 179
6.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.3 Materials and Methods . . . . . . . . . . . . . . . . . . 185
6.3.1 Animals . . . . . . . . . . . . . . . . . . . . . . 185
6.3.2 Groups of Variables . . . . . . . . . . . . . . . . 187
6.3.3 Statistical analysis . . . . . . . . . . . . . . . . 194
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4.1 Performance comparison between the Basque and
the Large White pigs in dierent housing systems197
6.4.2 Performance comparison among the Basque pigs
in dierent housing systems . . . . . . . . . . . 211
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 236
7 Partial Correlation-Based Network Construction of Pork
Quality 247
7.1 Graphical Gaussian models (GGMs) . . . . . . . . . . 248
7.2 Network construction of pork quality . . . . . . . . . . 250
7.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 253
7.4 Materials and Methods . . . . . . . . . . . . . . . . . . 254
7.4.1 Animals and Groups of Variables . . . . . . . . 254
7.4.2 Statistical analysis . . . . . . . . . . . . . . . . 255
7.5 Results and Discussion . . . . . . . . . . . . . . . . . . 258
7.5.1 The overview network of pork quality variables 258
7.5.2 Subnetwork of selected pork quality variables . 264
7.5.3 Lipid/protein oxidation . . . . . . . . . . . . . . 273
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 277
General Conclusion 286
dc.language.isoen
dc.title臺灣黑毛豬生產特性及法國本地豬種 Basque 與法國大白豬生產性能比較之研究zh_TW
dc.titleStudies on the Charcteristics of Taiwan Black Pigs in Taiwan and the Comparison between the French Native Basque Pig and French Large White Pigen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.coadvisor王佩華(Pei-Hwa Wang),Catherine Larzul(Catherine Larzul),Jean-Pierre Bidanel(Jean-Pierre Bidanel)
dc.contributor.oralexamcommittee黃木秋(Mu-Chiou Huang),Emma F&amp;agrave;brega(Emma F&amp;agrave;brega)
dc.subject.keyword體型,屠體及肉質,法國 Basque 豬種,法國大白豬,微衛星標幟,myogenin 及 myf6 基因,臺灣黑毛豬,zh_TW
dc.subject.keywordBody conformation,Carcass and meat quality,French Basque pig,French Large White pig,Microsatellite marker,myogenin and myf6 genes,Taiwan black pig,en
dc.relation.page289
dc.rights.note有償授權
dc.date.accepted2014-01-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved