請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5864完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊榮輝,闕壯卿 | |
| dc.contributor.author | Ching-Han Hu | en |
| dc.contributor.author | 胡景涵 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:17:54Z | - |
| dc.date.available | 2016-09-06 | |
| dc.date.available | 2021-05-16T16:17:54Z | - |
| dc.date.copyright | 2013-09-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | Abate C, Patel L, Rauscher FJ, Curran T (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science; 249:1157-1161.
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of umorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100: 3983-3988. Andoh T, Chock PB, Chiueh CC (2002) The Roles of Thioredoxin in Protection against Oxidative Stress-induced Apoptosis in SH-SY5Y Cells. J Biol Chem 277, 9655-9660. Arner ESJ, Bornstedt M, Holmgren A (1995) 1-Chloro-2,4-dinitrobenzene is an irreversible inhibitor of human thioredoxin reductase. Loss of thioredoxin disulfide reductase activity is accompanied by a large increase in NADPH oxidase activity. J Biol Chem 270:3479-3482. Arner ESJ, and Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem 267: 6102-6109. Benard J, Raguenez G, Kauffmann A, et al. (2008). MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S. Mol Oncol 2: 261–71. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203–216. Desouza M, Gunning PW, Stehn JR (2012). The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture 2:75-87. Eklund H, Gleason FK, Holmgren A (1991) Structural and functional relations among thioredoxins of different species. Proteins 11:13-28. Froelich-Ammon SJ, Osheroff N. (1995) Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J Biol Chem 270: 21429-21432. Furth J, Kahn MC (1937) The transmission of leukaemia of mice with a single cell. Am J Cancer 31:276–282. Gellert M, Mitzuuchi K, O’Dea MH, Nash HA (1976) An enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 73: 3872-2876. Gerlier D and Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods 94: 57-63. Gordaliza M, Garcia PA, del Corral JM, Castro MA, Gomez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44: 441–59. Hande KR (1998) Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34: 1514–1521. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB and Rich JN (2010) Hypoxia inducible factors in cancer stem cells .British Journal of Cancer .102: 789–795. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237-271. Holmgren A (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure; 3:239-243. Huntly BJ, Gilliland DG (2005) Leukaemia stemcells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321. Israel M A, Hay R J, Park, JG, and Gazdar, A (1994) Atlas of Human Tumor Cell Lines. San Diego: Academic Press, pp. 42–78. Jordan CT, Guzman ML, and Noble M (2007) Cancer stem cell. N Engl J Med 355: 1253-1261. Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterizationof thioredoxin, the Hydrogen donor from escherichia Coli. J Biol Chem 239:3436-3444. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–7. Luthman M, Eriksson S, Holmgren A, Thelander L (1979) Glutathione-dependent hydrogen donor system for calf thymusribonucleoside-diphosphate reductase. Proc Natl Acad Sci USA; 76:2158-2162. Maitland NJ, Collins AT (June 2008) Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 26: 2862–70 Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369: 2106–2120. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362: 2106-2120. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT (1992) Thioredoxin regulates the DNA binding activity of NFkappaB by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20:3821-3830. Nguyen P, Awwad RT, Smart DD, Spitz DR, Gius D (2006). Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Lett 236:164-174. Nordberg J, Zhong L, Holmgren A, Arner ES (1998). Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. J Biol Chem 273:10835-10342 O'Brien CA, Pollett A, Gallinger S, Dick JE (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–10. Ruth H, Angelika E, Tomoro H, Jane EM, Naohiko I, Patricia F,Anna MC, Audrey EE, and Garrett MB (2002). Resistance to Chemotherapy Mediated by TrkB in Neuroblastomas. Cancer Res 62:6462-6466 Schallreuter KU and Wood JM (1987). Azelaic acid as a competitive inhibitor of thioredoxin reductase in human melanoma cells. Cancer Lett 36: 297–305. Schallreuter KU, Gleason FK, Wood JM (1990). The mechanism of action of the nitrosourea anti-tumor drugs on thioredoxin reductase, glutathione reductase and ribonucleotide reductase. Biochim Biophys Acta 1054:14-20. Schatton T, Murphy GF, Frank, NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008). Identification of cells initiating human melanomas. Nature 451: 345–9. Schatton T, Frank NY, Frank MH (2009) Identification and targeting of cancer stem cells. Bioessays 31: 1038–1049. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–8. Slevin M (1991) The clinical pharmacology of etoposide. Cancer 67: 319-329. Wang JC (1971) Interaction between DNA and E. coli: protein omega. J Mol Biol 55: 523-533. Welsh SJ, Bellamy WT, Briehl MM, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62:5089-5095. Yokomizo A, Ono M, Nanri H, Makino Y, Ohga T, Wada M, Okamoto T, Yodoi J, Kuwano M, Kohno K (1995) Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res 55:4293-6. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008). Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68: 4311–20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5864 | - |
| dc.description.abstract | 研究背景
神經纖維母細胞乃常見好發於兒童之惡性腫瘤,死亡率極高,且經治療後,仍常見復發及轉移之現象 (Marvis, 2010)。根據癌症幹細胞之理論,認為癌症之所以常見復發及轉移之現象,是由於腫瘤裡面存在著癌症幹細胞,此類細胞在經由化療藥物處理下可以繼續存活 (Jordan, Guzman, and Noble, 2007)。 而根據本研究團隊於2002年所做之實驗發現 (Andoh , Chock , and Chiueh, 2001),經由pre-conditioned之SH-SY5Y cells (N cells) 會表現CD-133 細胞表面抗原及Trx,相較於wild type control cells (D cells) N cells可形成一顆腫瘤及轉移。 D cells之Trx表現量較低並且對於外界氧化壓力較敏感而較容易造成細胞凋亡之現象。 研究目的 希望了解Thioredoxin 表現量是否影響癌症幹細胞與化療藥物抗藥性之間的關係,並了解Trx之redox cycling與化療藥物抗藥性之關係。 研究方法 希望藉由Western blotting來了解在control D cell及pre-conditioned N cell 其Thioredoxin表現量的差異。並藉由Hoechst 33258 細胞核染劑及Trypan blue exclusion assay 來了解在加入etoposide (0 to 83 μM) 後,兩株細胞細胞凋亡與存活率之差異。藉由螢光顯微鏡觀察觀察control D cell 在加入etoposide (0 to 83 μM) 作用24小時後,細胞型態變化情形。使用DNCB (50 μM) 做為 Trx之redox cycling的抑制劑。 結果 此次實驗首先比較pre-conditioned N cells 與control D cells 之Trx表現量之差異,結果顯示N cells之thioredoxin表現量確實較D cells高3倍。接著進行etoposide加藥實驗,經實驗計算發現,pre-conditioned N cells要達到與control D cells相同之 a細胞凋亡比率,需27倍的藥物劑量。再者加入DNCB (50 μM)抑制Trx之redox cycling,可發現經DNCB處理之 N cells 其細胞凋亡之比率與control D cells相近。此結果顯示thioredoxin表現量差異的確會影響N cells之存活率,並且影響etoposide所產生之細胞凋亡導致細胞對化療藥物產生抗藥性之現象。另外在進行加藥實驗時發現,D cells 在高劑量化療藥物 (83 μM etoposide) 作用時,經由顯微鏡觀察,發現其細胞型態改變且與 N cell之型態相似,並且Trx表現量上升。因此推測可能在化療藥物作用下,normal cancer cell 會經由刺激而突變或是篩選成與癌症幹細胞相似之細胞。 結論 Trx表現量確實會避免癌症細胞對化療藥物etoposide所導致之細胞凋亡產生抗藥性。並且control D cells 在etoposide作用之下,Trx表現量及細胞型態皆有改變。Trx之redox cycling在化療藥物產生抗藥性中扮演重要的角色。 | zh_TW |
| dc.description.abstract | Backgrounds
Neuroblastoma is a kind of children cancer that has a relatively high mortality, recurrence and metastasis; drug resistance is frequently seen after the treatment with chemotherapy (Marvis, 2010). According to the theory of cancer stem cell (CSC), the reason why cancer usually recurs and metastasizes is due to the CSC exists in the tumor which can even survive and grow into a new tumor after chemotherapy (Jordan, Guzman, and Noble, 2007). After a new discovery of our team (Andoh, Chock, and Chiueh, 2002), a CD-133 positive and Trx-expressed CSC-like cells (N cells) were isolated from the pre-conditioned human SH-SY5Y cells (unpublished observations of Chiueh et al). N cells produced a solid tumor but not by its wild type control cells (D cells) in nude mice. D cells are associated with low Trx expression and also sensitive to oxidative injury and related apoptotic cell death. Objective To understand whether Trx expression affects the relationship between the preconditioned N cells and resistance to chemotherapy; to investigate the redox cycling role of Trx in mediating chemo-resistance Methods Trx expression in control D cells and pre-conditioned N cells were measured by the Western blotting. Etoposide (0 to 83 μM)-induced apoptotic changes and cell viability in D and N cells were assayed by Hoechst 33258 nuclear staining and Trypan blue exclusion assay, respectively. The redox cycling of Trx was blocked by a Trx reductase inhibitor 1-Chloro-2,4-dinitrobenzene (DNCB (50 μM) in N cells. Cell morphology in control D cells after etoposide treatment (0 to 83 μM) for 24 hours was imaged by using fluorescence microscopy. Results First, this experiment was to compare the Trx expression of the pre-conditioned N cells with the control D cells. The result indicates that the Trx expression of N cells was 3 times greater than D cells. Etoposide-induced apoptosis in the pre-conditioned N cells were less than that in the control D cells by 27-fold. Next, after the co-treatment of N cells with 50 μM DNCB to block the redox cycling of Trx, the apoptosis cell percentage of DNCB-treated N cells was close to the control D cells. The present results show that the elevation of the Trx expression improved not only the survival rate of N cells, but also induced chemo-resistance reflected by a reduction in the apoptotic cell death caused by etoposide. In addition, following the etoposide (83 μM) treatment, the phenotype of the D cells was changed to N cell morphology with a concurrent increase in Trx levels. This phenomenon infers that the normal cancer cell may be mutated and altered into CSC-like cells under the stimulation of chemopherapy. Conclusions The expression of Trx can prevent cancer cells such as N cells from apoptotic cell death caused by etoposide. The Trx expression and the cell morphology were altered after the treatment of etoposide in the control D cells. The redox cycling of Trx in human neuroblastoma cancer cells may play a critical role in the development of chemo-resistance. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:17:54Z (GMT). No. of bitstreams: 1 ntu-102-R00b22036-1.pdf: 3698865 bytes, checksum: 85f263693728697b6d72e76ad4c713da (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Chapter 1. Preface……………………………………………………1
1.1 Rationale……………………………………………………1 1.2 Working Hypothesis………………………………………2 1.3 Research Goal………………………………………………2 Chapter 2. Literature Review………………………………………3 2.1 Neuroblastoma……………………………………………3 2.2 Etoposide and Topoisomerase II……………………4 2.3 Cancer Stem Cell………………………………………5 2.3.1 Cancer Stem Cell Theor………………………5 2.3.2 Cancer Stem Cell Markers and Chemo-resistance……………………………8 2.4 Thioredoxin (Trx)………………………………………11 2.4.1 Trx System…………………………………………11 2.4.2 Inhibition of Trx System………………………12 Chapter 3. Materials and Methods………………………………13 3.1 Materials…………………………………………………13 3.2 Cell Cultures……………………………………………14 3.3 Nuclear Staining of Apoptotic Cells by Hoechst 33258……………………………………………14 3.4 Trypan Blue Exclusion Assay…………………………15 3.5 Western Blotting………………………………………15 3.6 MTT Assay…………………………………………………16 Chapter 4. Preliminary Results………………………………17 4.1 Trx expression and N cells…………………………17 4.2 Effects of etoposide…………………………………19 4.2.1 Apoptotic cell changes………………………19 4.2.2 Comparison of cell viability in D and N cells following etoposide treatment………22 4.3 The effect of the inhibitor of redox cycling of Trx on etoposide-induced apoptosis in N cells…25 4.3.1 The apoptosis cell death may increase in DNCB treated N cells…………………………25 4.3.2 Effect of DNCB on Trx levels…………… 28 4.4 The changes of etoposide-treated D cells………30 4.4.1 Trx level in etoposide-treated D cells…30 4.4.2 D cell morphology has changed after etoposide treated………………………………30 Chapter 5. Discussion……………………………………………33 5.1 Role of Trx on etoposide-treated N cells………33 5.2 D cell may promote it cell survival by increased Trx expression……………………………36 Chapter 6. References…………………………………………39 | |
| dc.language.iso | zh-TW | |
| dc.subject | thioredoxin | zh_TW |
| dc.subject | 癌症幹細胞 | zh_TW |
| dc.subject | 化療抗藥性 | zh_TW |
| dc.subject | etoposide | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | cancer stem cell | en |
| dc.subject | drug resistance | en |
| dc.subject | chemotherapy | en |
| dc.subject | etoposide | en |
| dc.subject | metastasis | en |
| dc.subject | thioredoxin | en |
| dc.title | Thioredoxin 與化療藥物治療後產生癌細胞抗藥性之關聯性 | zh_TW |
| dc.title | The Possible Role of Thioredoxin in causing Drug
Resistance following Chemotherapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許秀蘊,楊健志,黃楓婷 | |
| dc.subject.keyword | 癌症幹細胞,化療抗藥性,etoposide,轉移,thioredoxin, | zh_TW |
| dc.subject.keyword | cancer stem cell,chemotherapy,drug resistance,etoposide,metastasis,thioredoxin, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 3.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
