請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58647
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾惠斌(Hui-Ping Tserng) | |
dc.contributor.author | Wen-Haw Huang | en |
dc.contributor.author | 黃文顥 | zh_TW |
dc.date.accessioned | 2021-06-16T08:23:49Z | - |
dc.date.available | 2019-03-18 | |
dc.date.copyright | 2014-03-18 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-01-22 | |
dc.identifier.citation | Abidali, A. F., and Harris, F. (1995). 'A methodology for predicting company failure in the construction industry.' Construction Management and Economics, 13(3), 189-196.
Abudayyeh, O., Zidan, S., Yehia, S., and Randolph, D. (2007). 'Hybrid Prequalification-Based, Innovative Contracting Model Using AHP.' Journal of Management in Engineering, 23(2), 88-96. Altman, E. I. (1976). 'Capitalization of Leases and the Predictability of Financial Ratios: A Comment.' The Accounting Review, 51(2), 408-412. Altman, E. I., Marco, G., and Varetto, F. (1994). 'Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience).' Journal of Banking & Finance, 18(3), 505-529. Andersen, T.G., Bollerslev, T., Diebold, F.X., Ebens, H. (2001) “The distribution of realized stock return volatility,” Journal of Financial Economics, 61(1), 43–76. Arora, N., Bohn, J. R. and Zhu, F. (2005). Reduced form vs. structural models of credit risk: a case study of three models.” Moody’s KMV Company. Assaf, S. and Jannadi, M.O. (1994). “A multi‐criterion decision‐making model for contractor prequalification selection.” Building Research & Information, 22(6), 332-335 Beaver, W. H. (1966). 'Financial Ratios As Predictors of Failure.' Journal of Accounting Research, 4(ArticleType: research-article / Issue Title: Empirical Research in Accounting: Selected Studies 1966 / Full publication date: 1966 / Copyright c 1966 Accounting Research Center, Booth School of Business, University of Chicago), 71-111. Bellotti, T., and Crook, J. (2009). 'Support vector machines for credit scoring and discovery of significant features.' Expert Systems with Applications, 36(2, Part 2), 3302-3308. Bharath, S. T., and Shumway, T. (2008). 'Forecasting Default with the Merton Distance to Default Model.' Review of Financial Studies, 21(3), 1339-1369. Black, F. and Scholes, M. (1973). “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81, 637–654. Campbell, J. Y., and Hentschel, L. (1992). 'No news is good news: An asymmetric model of changing volatility in stock returns.' Journal of Financial Economics, 31(3), 281-318. Campbell, J. Y., Hilscher, J., and Szilagyi, J. A. N. (2008). 'In Search of Distress Risk.' The Journal of Finance, 63(6), 2899-2939. Chen, T.-K., Liao, H.-H., and Lu, C.-W. (2011). 'A flow-based corporate credit model.' Rev Quant Finan Acc, 36(4), 517-532. Coats, P. K., and Fant, L. F. (1993). 'Recognizing Financial Distress Patterns Using a Neural Network Tool.' Financial Management, 22(3), 142-155. Collin-Dufresne, P. and Goldstein, R. S. (2001), Do Credit Spreads Reflect Stationary Leverage Ratios?. The Journal of Finance, 56: 1929–1957. Crosbie, P. and Bohn, J. (2003). “Modeling Default Risk.” Moody’s KMV Company Duffie, D., and Singleton, K. (1999). 'Modeling term structures of defaultable bonds.' Review of Financial Studies, 12(4), 687-720. Eisenbeis, R. A. (1977). 'Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics.' The Journal of Finance, 32(3), 875-900. Elazouni, A. M. (2006). 'Classifying Construction Contractors Using Unsupervised-Learning Neural Networks.' Journal of Construction Engineering and Management, 132(12), 1242-1253. El-Sawalhi, N., Eaton, D., and Rustom, R. (2007). 'Contractor pre-qualification model: State-of-the-art.' International Journal of Project Management, 25(5), 465-474. Elton, S. (1978). 'On the Financial Applications of Discriminant Analysis: Comment.' The Journal of Financial and Quantitative Analysis, 13(1), 201-210. Fan, J. P. H., Titman, S., and Twite, G. (2012). 'An International Comparison of Capital Structure and Debt Maturity Choices.' Journal of Financial and Quantitative Analysis, 47(01), 23-56. Gharghori, P., Chan, H. and Faff, R. (2006). 'Investigating the performance of alternative default-risk models: Option-based versus accounting-based approaches.' Australian Journal of Management, 31(2), 207-234. Hatush, Z., and Skitmore, M. (1997). 'Evaluating contractor prequalification data: selection criteria and project success factors.' Construction Management and Economics, 15(2), 129-147. Hillegeist, S., Keating, E., Cram, D., and Lundstedt, K. (2004). 'Assessing the Probability of Bankruptcy.' Review of Accounting Studies, 9(1), 5-34. Holt, G. D., Olomolaiye, P. O., and Harris, F. C. (1994). 'Applying multi-attribute analysis to contractor selection decisions.' European Journal of Purchasing & Supply Management, 1(3), 139-148. Hosmer, D. W., and Lemeshow, S. (2000). Applied logistic Regression. 2nd Ed., New York: John Wiley & Sons, Inc. Ibbotson Associates (2010). “Stocks, Bonds, Bills and Inflation.” Ibbostson Associates, annual. Jarrow, R. A. and Protterb, P. (2004). 'Structural versus reduced form models: A new information based perspective.' Journal Of Investment Management, 2(2), 1-10. Jarrow, R. A. and Turnbull, S. M. (1995), Pricing Derivatives on Financial Securities Subject to Credit Risk. The Journal of Finance, 50: 53–85. Jarrow, R. and Turnbull, S. (1992). “Credit Risk: Drawing the Analogy.” Risk Magazine 5(9). Jarrowa, R. A. and Protterb, P. (2004). 'Structural versus reduced form models: A new information based perspective.' Journal Of Investment Management, 2(2), 1-10. Joy, O. M., and Tollefson, J. O. (1978). 'Some Clarifying Comments on Discriminant Analysis.' Journal of Financial and Quantitative Analysis, 13(01), 197-200. KPMG International Corporate Tax Rates (2009). Retrieved August 5, 2010. From http://www.kpmg.com/Global/en/services/Tax/tax-tools-and-resources/Pages/corporate-tax-rates-table.aspx Lacher, R. C., Coats, P. K., Sharma, S. C., and Fant, L. F. (1995). 'A neural network for classifying the financial health of a firm.' European Journal of Operational Research, 85(1), 53-65. Leland, H. E. and Toft, K. B. (1996), Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads. The Journal of Finance, 51: 987–1019. Liao, H. H. and Chen T. K., 2006, “A Cash Flow Based Corporate Credit Portfolio Analysis -- A Conditional Independent Default Approach” , www.defaultrisk.com Liao, H.-H. and Chen, T.K. (2004). “A cash flow based multi-period corporate credit model”. (May 15, 2004). Available at SSRN: http://ssrn.com/abstract=753304 or http://dx.doi.org/10.2139/ssrn.753304 Longstaff, F. A. and Schwartz, E. S. (1995), A Simple Approach to Valuing Risky Fixed and Floating Rate Debt. The Journal of Finance, 50: 789–819. Mason, R. J. and Harris, F. C. (1979) “Predicting Company Failure in the Construction Industry” Proceedings Institution of Civil Engineers, 66, 301-307. Merton, C. R. (1974). “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.” Journal of Finance 29, 449–470. Navon, R. (1996). 'Company-Level Cash-Flow Management.' Journal of Construction Engineering and Management, 122(1), 22-29. Odom, M. D., and Sharda, R. 'A neural network model for bankruptcy prediction.' Proc., Neural Networks, 1990., 1990 IJCNN International Joint Conference on, 163-168 vol.162. Park, H., Han, S., and Russell, J. (2005). 'Cash Flow Forecasting Model for General Contractors Using Moving Weights of Cost Categories.' Journal of Management in Engineering, 21(4), 164-172. Plebankiewicz, E. (2010). 'Construction contractor prequalification from polish clients’ perspective.' Journal of Civil Engineering and Management, 16(1), 57-64. Reisz, A. S., and Perlich, C. (2007). 'A market-based framework for bankruptcy prediction.' Journal of Financial Stability, 3(2), 85-131. Robinson, T. R., Greuning, H. V., Henry, E., Broihahn, M. A. (2009). International Financial Statement Analysis. Hoboken, N.J.: John Wiley & Sons, Inc. Russell, J. S. (1992). 'Decision models for analysis and evaluation of construction contractors.' Construction Management and Economics, 10(3), 185-202. Russell, J. S. (1996). Constructor prequalification: Choosing the best constructor and avoiding constructor failure. Reston: ASCE Press. Russell, J. S., and Skibniewski, M. J. (1988). 'Decision Criteria in Contractor Prequalification.' Journal of Management in Engineering, 4(2), 148-164. Russell, J. S., Hancher, D. E., and Skibniewski, M. J. (1992). 'Contractor prequalification data for construction owners.' Construction Management and Economics, 10(2), 117-135. Russell, J., and Skibniewski, M. (1990). 'QUALIFIER‐1: Contractor Prequalification Model.' Journal of Computing in Civil Engineering, 4(1), 77-90. Russell, J., and Zhai, H. (1996). 'Predicting Contractor Failure Using Stochastic Dynamics of Economic and Financial Variables.' Journal of Construction Engineering and Management, 122(2), 183-191. Sanders, N.R. and Manrodt, K.B. (1994). “Forecasting practices in US corporations: survey results.” Interfaces, 24(2): 92-100. Severson, G., Russell, J., and Jaselskis, E. (1994). 'Predicting Contract Surety Bond Claims Using Contractor Financial Data.' Journal of Construction Engineering and Management, 120(2), 405-420. Sonmez, M., Holt, G., Yang, J., and Graham, G. (2002). 'Applying Evidential Reasoning to Prequalifying Construction Contractors.' Journal of Management in Engineering, 18(3), 111-119. Stein, R. M. (2007). “Benchmarking Default Prediction Models: Pitfalls and Remedies in Model Validation.” Journal of Risk Model Validation, 1(1), 77-113. Tam, K. Y., and Kiang, M. Y. (1992). 'Managerial Applications of Neural Networks: The Case of Bank Failure Predictions.' Management Science, 38(7), 926-947. Tserng, H., Liao, H., Tsai, L., and Chen, P. (2011). 'Predicting Construction Contractor Default with Option-Based Credit Models—Models’ Performance and Comparison with Financial Ratio Models.' Journal of Construction Engineering and Management, 137(6), 412-420. US Business Cycle Expansions and Contractions (2010). The National Bureau of Economic Research, USA. Retrieved from http://www.nber.org/cycles.html Vassalou, M., and Xing, Y. (2004). “Default Risk in Equity Returns.”Journal of Finance, 59(2), 831-868. Wharton Research Data Services (2010). The Wharton School of the University of Pennsylvania. < http://wrds.wharton.upenn.edu> (Jul. 1,2010) Wilson, R. L., and Sharda, R. (1994). 'Bankruptcy prediction using neural networks.' Decision Support Systems, 11(5), 545-557. Yu, F. (2005) ‘‘Accounting Transparency and the Term Structure of Credit Spreads,’’ Journal of Financial Economics, 75(1), 53-84. Zhou, C. (1997), A Jump Diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities. Federal Reserve Board of Governors. http://www.federalreserve.gov/pubs/feds/1997/199715/199715pap.pdf Zmijewski, M. E. (1984). 'Methodological Issues Related to the Estimation of Financial Distress Prediction Models.' Journal of Accounting Research, 22(ArticleType: research-article / Issue Title: Studies on Current Econometric Issues in Accounting Research / Full publication date: 1984 / Copyright c 1984 Accounting Research Center, Booth School of Business, University of Chicago), 59-82. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58647 | - |
dc.description.abstract | 工程招標時,營建廠商資格預審是一個很重要及須高度優先關注的課題,因為工程的成敗與承包廠商的能力是高度相關的。因此,在招標過程中把不合格廠商篩選出來對業主而言是非常重要的。資格預審是一個決策過程,其過程包含很多不同的評估標準。早期廠商資格預審的研究主要是透過特性權重法來篩選合格的廠商,然而此方法的權重計算是根據評審委員們的評估標準來訂定的,並無標準的計算及評估方式,因此評估結果會被評審委員個人的主觀意見所影響。
本研究引用Liao and Chen (2006)所發展的現金流量基礎模型來評估營建廠商的信用風險分數,進而了解其公司財務狀況,達到財務資格預審之目的。因現金流量能有效的反應出營建廠商是否具有履行其財務責任的能力。在工程進行時,若承包廠商因財務狀況不佳而面臨債務拖欠或是破產的危機,這將導致其興建中的工程延遲或是失敗。因此,對營建管理而言如何去評估及選擇具有財務能力的承包廠商是一個很重要的議題。透過營建公司的歷年每季現金流,本研究應用之現金流量基礎模型可模擬出該公司的信用風險分數。最後再採用接受者操作特徵曲線 (ROC Curve) 衡量本模型判別各營建廠商之未來三年信用風險分數的能力,以判斷本模型於營建產業信用風險評估之適用性。 根據本研究結果顯示,此現金流量基礎模型在判別營建廠商的信用風險時具有相常良好的判別能力。由此可知,本模型非常適用於評估營建產業的信用風險。此外,此模型僅需會計報表中的現金流量資訊,適用於上市以及非上市之營建公司,更能廣泛地應用於營建產業之信用風險評量上。 | zh_TW |
dc.description.abstract | The prequalification of construction contractors are highly prioritized step in awarding construction project. The success or failure of any construction project is influenced by the performance of a contractor. It is an important issue for construction owner to screen out any incapable contractors during the tender stage. Contractor prequalification is a decision process involves in wide variety of selection criterion. Previous contractor prequalification incorporated dimensional weighting method to select an appropriate contractor. However, the weight for selection criterion relies on the subjective judgments of construction owner. In contrast, the dimension wide method compares contractors with one criterion at a time to avoid subjective judgment.
This study employ a cash flow based credit model proposed by Liao and Chen (2006) to assess the contractors’ credit score as contractor’s financial prequalification. The cash flows mainly reflect contractor’s capability to meet its financial obligations. A failure of construction contractor may have problems completing the project. Therefore, it is critical to select a financial capable contractor in construction management. The cash flow credit model uses historical quarterly free cash flow to firm of construction contractors to simulate credit quality score. The Receiver Operating Characteristics (ROC) curve is employed to evaluate the model’s discriminatory performance in ranking the credit score of construction contractors for three years. The empirical results show that the cash flow credit model achieves an excellent discriminatory performance in assessing the credit score of construction contractors. The cash flow based credit model proves to be useful in assessing credit risk of construction contractors. The model is applicable to both public listed and private construction contractors as it only requires information from financial statement. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:23:49Z (GMT). No. of bitstreams: 1 ntu-103-D99521008-1.pdf: 5506535 bytes, checksum: 968241084ef15cbace959d8c1181d314 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENTS I
摘要 II ABSTACT III TABLE OF CONTENTS V TABLE OF FIGURES IX TABLE OF TABLES X Chapter 1. Introduction 1 1.1 Research Background and Motivation 1 1.2 Problem Statement 2 1.3 Research Objectives 5 1.4 Research Scope and Limitations 6 1.5 Procedure of the Research 7 1.6 Dissertation Structure 8 Chapter 2. Literature Review 9 2.1 Contractor Prequalification 9 2.1.1 Dimensional Weighting Method 10 2.1.2 Dimension Wide Method 10 2.1.3 Selection Criteria 11 2.2 Types of Credit Risk Models 11 2.3 A Review of Financial Ratio Models 14 2.3.1 Univariate Ratio Model 14 2.3.2 Z-Score Model 15 2.3.3 Mason and Harris (1979) 16 2.3.4 Severson, Russell and Jaselskis (1994) 17 2.3.5 Abidali and Harris (1995) 17 2.3.6 Logit and Probit Models 18 2.3.7 Neural Network Models 19 2.4 Cash Flow Based Credit Model 21 Chapter 3. Methodology 24 3.1 Research Methodology 24 3.2 Free Cash Flow to Firm 28 3.3 Cash Flow Based Credit Model 29 3.3.1 Single-Firm State-Dependent Cash Flow Based Credit Model 29 3.3.2 Estimation of Firm’s Weighted Average Cost of Capital 31 3.3.3 Credit Quality Score 32 3.4 Model Evaluation Approach: ROC curve 33 Chapter 4. Data Collection and Empirical application 36 4.1 Data Collection 36 4.2 Selection of Cash Flow Proxy 39 4.3 Factor Analysis and Estimation of State Factor 40 4.4 Present Value Model Parameters Estimation 42 4.4.1 Estimation of a Firm’s Weighted Average Cost of Capital 42 4.4.2 Estimation of Constant Growth Rate of Firm 44 4.4.3 Estimation of the Shift term to a Firm’s Cash Flow Paths 44 4.5 Credit Rating Default Thresholds 45 4.6 Credit Quality Score and Empirical Examination 46 Chapter 5. Empirical Validations of models using Taiwan contractors sample 51 5.1 Data Collection 51 5.2 Factor Analysis and Estimation of State Factor 53 5.3 Estimation of a Firm’s Weighted Average Cost of Capital 54 5.4 Estimation of Constant Growth Rate and Shift term to a Firm’s cash flow paths 55 5.5 Credit Quality Score 56 Chapter 6. Conclusions and Suggestions 60 6.1 Conclusions 60 6.2 Research Contributions 61 6.3 Suggestions 62 References 64 Appendixes 71 Appendix I The Description of Standard & Poor’s Issuer Credit Ratings Categories ( Source : Compustat Database) 71 Appendix II The Time Series of Free Cash Flow Pattern of U.S. Construction Firms 74 Appendix III Factor Analysis of U.S. Firm’s Free Cash Flows 77 Appendix IV Maximum Likelihood Algorithm for Factor Generating Formula 81 Appendix V Cash Flow Shift Term Estimates 83 Appendix VI TCRI Ratings 85 Appendix VII The Time Series of Free Cash Flow Pattern of Taiwan Construction Firms 86 Appendix VIII Factor Analysis of Firm’s Free Cash Flows 88 | |
dc.language.iso | en | |
dc.title | 運用現金流量信用風險模型評估營造公司之財務資格預審 | zh_TW |
dc.title | Contractor Financial Prequalification Using Cash Flow Based Credit Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 廖咸興(Hsien-Hsing Liao),尹衍樑(Samuel Y.L. Yin),葉怡成(I-Cheng Yeh),周瑞生(Jui-Sheng Chou),荷世平(S.Ping Ho) | |
dc.subject.keyword | 營建業,營建廠商資格預審,信用風險,現金流量,ROC曲線, | zh_TW |
dc.subject.keyword | construction industry,contractor prequalification,credit risk,cash flow,ROC curve, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-01-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 5.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。