請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58645完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭鴻祥(Hung-Hsiang Cheng) | |
| dc.contributor.author | Yu-Kai Liu | en |
| dc.contributor.author | 劉昱楷 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:23:43Z | - |
| dc.date.available | 2016-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-22 | |
| dc.identifier.citation | [1] G. E. Moore, Electronics. 38 (1965).
[2] International technology roadmap for semiconductors 2012 update overview (2012). [3] M. Depas, B. Vermeire’, P. W. Mertens, R. L. Vanmeirhaeghe and M. M. Heyns, Solid State Electron. 38 (1995) 1465. [4] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, IEEE Electron Device. Lett. 18 (1997) 209 [5] J. Robertson, Rep. Prog. Phys. 69 (2006) 327 [6] L. Colombo, J. J. Chambers, and H. Niimi, The Electrochemical Society Interface. (2007) 51 [7] C. J. Yim ,D.-H. Ko, S. H. Park, W. J. Lee and M.-H. Cho, Journal of the Korean Physical Society, 58. 5 (2011) 1163 [8] Hyunsang Hwang, Wenchi Ting, Dim-Lee Kwong, and Jack Lee, IEDM’90 (1990) 421 [9] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87 (2000) 484 [10] J. Wang, H. P. Li, and R. Stevens, Journal of Material Science. 27 (1992) 5397 [11] X. Zhao and D. Vanderbilt, Phys. Rev. B 65 (2002) 233106 [12] P. K. Park and S. W. Kang, Appl. Phys. Lett. 89 (2006) 192905 [13] M. Sahin, S. Ozder, and R. Turan, Turk. J. Phy. 25 (2001) 43 [14] R. Chau, S. Datta, M. Doczy, B. Doyle, and J. Kavalieros, and M. Metz, IEEE Electron Device Lett. 25 (2004) 6 [15] K. Goto, J. Murota, T. Maeda, R. Schutz, K. Aziwa, R. Kircher, K. Yokoo, and S. Ono, Jpn. J. Appl. Phys. Part 1 32 (1993) 438 [16] R. L. Puurunen, J. Appl. Phys. 97 (2005) 121301 [17] J. M. Khoshman, and M. E. Kordesch, Appl. Surf. Sci. 201 (2006) 3530–3535 [18] M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, F. Bridou, and M.-F. Ravet, Appl. Surf. Sci. 253 (2006) 328. [19] M. Liu, G. He, L.Q. Zhu, Q. Fang, G.H. Li, and L.D. Zhang, Appl. Surf. Sci. 252 (2006) 6206–6211 [20] E. Bersch, S. Rangan, and R. A. Bartynski, Phys. Rev. B 78 (2008) 085114 [21] D. A. Neumayer, and E. Cartier, J. Appl. Phys. 90 (2001) 1801 [22] G. Aygun and I. Yildiz, J. Appl. Phys. 106 (2009) 014312 [23] A. Deshpande, R. Inman, G. Jursich, and C. G. Takoudis, J. Appl. Phys. 99 (2006) 094102 [24] T.C.Chen, C.Y.Peng, C.H.Tseng, M.H.Liao, M.H.Chen, C.I.Wu, M.Y.Chern, P.J.Tzeng and C.W.Liu, IEEE Electron Device Lett. 54 (2007) 4 [25] R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, J. Mater. Res.22 (2007) 12 [26] Sandrine Rivillon, Yves J. Chabal, Fabrice Amy, and Antoine Kahn, Appl. Phys. Lett. 87 (2005) 253101 [27] K. Park, Y. Lee, J. Lee, and S. Lim, Appl. Surf. Sci. 254 (2008) 4828 [28] J. Beynon, M. M. A. G. EL-Samanoudy, S. K. J. AL-Anit, Journal of Material Science. 8 (1989) 786 [29] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, Appl. Phys. Lett. 59 (1991) 10 [30] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, J. Appl. Phys. 65 (1989) 1724 [31] T. J. Park, J. H. Kim, J. H. Jang, K. D. Na, M. Seo, C. S. Hwang, and J. Y. Wo, Electrochem. Solid State Lett. 10 (2007), 97 [32]A. K. Duttaa, Appl. Phys. Lett. 68 (1995) 9 [33] T. J. Park, J. H. Kim, J. H. Jang, M. Seo, and C. S. Hwang, Appl. Phys. Lett. 90 (2007) 042915 [34] C. Martinet and R. A. B. Devine, J. Appl. Phys. 77 (1995) 4343 [35] G. Lucovsky, M. J. Manitini, J. K. Srivastava and E. A. Irene, J. Vac. Sci. Technol. B 5 (1987) 530 A. K. Duttaa, Appl. Phys. Lett. 68 (1995) 9 [36] A. Grill and D. A. Neumayer, J. Appl. Phys. 94 (2003) 6697 [37] Y. Song, T. Sakurai, K. Kishimoto, K. Maruta, S. Matsumoto, K. Kikuchi, Thin Solid Films. 334 (1998) 92 [38] R. Salh, A. von Czarnowki, E. V. Kolesnikova, and H. J. Fitting, Journal of Non-Crystalline Solids, 353 (2007) 546 [39] J. P. Perdew and Wang Yue, Phys. Rev. B 33, (1986) 8800 [40] X. Zhao and D. Vanderbilt, Phys. Rev. B 65 (2002) 233106 [41] W.C. Huang, H.W. Ting, K.M. Hung, J.H. Yin , K.H. Chou, H.C. Chang and T.H. Shieh, International Conference Multimedia Technology (ICMT) (2011) 6660 [42] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, J. Appl. Phys. 93 (2003) 11 [43] M. Kuhn, Solid State Electron. 13 (1995) 873 [44] L. M. Terman, Solid State Electron. 5 (1962) 285 [45] A. Koukab, A. Bath and E. Losson, Solid State Electron. 41 (1997) 635 [46] R. Castagnc and A. Vapaille, Surface Science 28 (1971) 157 [47] G. Bersuker, C. S. Park, J. Barnett, P. S. Lysaght, P. D. Kirsch, J. Appl. Phys. 100 (2006) 094108 [48] C. A. Pignedoli, A. Curioni, and W. Andreoni, PRL, 98 (2007) 037602 [49] S.N.A. Murad, P.T. Baine, D.W. McNeill, S.J.N. Mitchell, B.M. Armstrong, M. Modreanu, G. Hughes, R.K. Chellappan, Solid-State Electronics 78 (2012) 136 [50] K. Xiong, J. Robertson, M. C. Gibson and S. J. Clark, Appl. Phys. Lett. 87 (1995) 183505 [51] A. Stesmans and V. V. Afanasev, Appl. Phys. Lett. 82 (2003) 23 [52] M. H. Cho, H. S. Chang, D. W. Moon, S. K. Kang, B. K. Min, D.H. Ko, J. H. Lee, J. H. Ku, and N. I. Lee, Appl. Phys. Lett. 84 (2004) 7 [53] V. V. Afanasev, Y. G. Fedorenko, and A. Stesmans, Appl. Phys. Lett. 87 (2005) 032107 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58645 | - |
| dc.description.abstract | 近年來,由於互補式金屬氧化物半導體(CMOS)的尺寸快速縮小,傳統絕緣層材料二氧化矽因物理上的極限,造成漏電流過高而影響原件特性。因此,高介電質材料二氧化鉿被廣泛的研究並應用以取代二氧化矽,有助於半導體元件的持續微縮。此外,為了提高元件的工作速度,以擁有更高載子遷移率的應變矽鍺作為CMOS傳輸通道是一個較佳的選擇。但新的材料也因介面組成和應變效應產生新的問題。
在本研究中,我們以原子層沉積技術將二氧化鉿氧化層的厚度縮小至低於二奈米,成長於矽鍺磊晶基板與矽基板上。以這兩種結構進行光學與電學的量測,用以分析二氧化蛤與基板介面的特性。在以第一原理為模型的計算中,因晶格不匹配與介面張力造成的結果包含:在熱處理過程中鍺原子會向下遷移與介面存在低化學劑量的氧化矽,這些結論都在光學量測中被證實。 其次,針對二氧化鉿/矽鍺基板與二氧化鉿/矽基板實行的高頻電容-電壓量測,其結果分析出兩種結構在等效介電質常數、平帶電壓偏移與介面陷阱密度有明顯差異,這些差異能歸因於鍺氧化物的存在與矽擴散等效應。最後在電流-電壓的量測中,提供了兩種樣品的漏電流程度,其曲線可以由能帶結構的變異來解釋。 | zh_TW |
| dc.description.abstract | In the recent year, hafnium dioxide (HfO2) has been investigating and applying on gate dielectric of CMOS devices to improve the scaling difficult for SiO2. To develop the higher speed application, strained SiGe is the suggested channel material due to its high carrier mobility as compare with Si-substrate. In this work, we demonstrated the optical and electronic measurements on HfO2 film reached 1.4 nm grown by ALD on the SiGe on Si and Si substrate, to determine the interfacial characteristics. The properties at interface layer of HfO2/SiGe have been calculated by our theoretical model used first-principles. Lattice mismatch causes tensile stress result in Ge migration during thermal treatment and existence of substoichimetric SiOx are predicted and verified in optical measurement. On the other hand, C-V and I-V measurements detect the electronic qualities for HfO2/SiGe on Si and HfO2/Si MOS capacitors, includes the effective dielectric constant (keff), flat band voltage shift (ΔVFB), density of interface trap (Dit), and the leakage current density. These differences could attribute to the existence of Ge oxide, Si diffusion, and band structure variation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:23:43Z (GMT). No. of bitstreams: 1 ntu-103-R00943069-1.pdf: 1843646 bytes, checksum: 4653d30aa062cc75e31ce7ed87a488bf (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
Abstract ii 中文摘要 iii Content iv Figure Index vi Table Index viii Chapter 1 Introduction 1 1.1 CMOS technology and scaling 1 1.2 High-k dielectric material 2 1.3 Motivation for HfO2 3 1.4 Motivation for SiGe substrate 6 Chapter 2 Experimental equipments and measurement setup 8 2.1 Introduction 8 2.2 Molecular Beam Epitaxy 8 2.3 Atomic Layer Deposition 11 2.4 Fourier Transform Infra-red spectroscopy 13 2.5 LCR meter and C-V measurements 16 Chapter 3 Optical Property of HfO2/SiGe on Si and HfO2/Si Interface Layer 18 3.1 Introduction 18 3.2 Experiments 19 3.3 Experimental Results and Discussion 20 3.3.1 FTIR results 20 3.3.2 Thickness variation 22 3.4 Theoretical Model 25 3.4.1 Simulation tool and model built 25 3.4.2 Simulation method and results 27 3.5 Conclusions 29 Chapter 4 Electronic Characteristic of HfO2/SiGe on Si and HfO2/Si MOS Capacitor 30 4.1 Introduction 30 4.2 Theoretical model of MOS Capacitor 31 4.3 Experiment 34 4.4 Experimental Results and Discussion 35 4.4.1 C-V Results 35 4.4.2 I-V Results 41 4.5 Conclusions 43 Chapter 5 Summary and future work 44 5.1 Summary 44 5.2 Future work 46 References 47 | |
| dc.language.iso | en | |
| dc.subject | 二氧化鉿 | zh_TW |
| dc.subject | 高介電質材料 | zh_TW |
| dc.subject | 矽鍺磊晶層 | zh_TW |
| dc.subject | 介面層 | zh_TW |
| dc.subject | 金氧半電容器 | zh_TW |
| dc.subject | Hafnium dioxide | en |
| dc.subject | SiGe epitaxy layer | en |
| dc.subject | Interface layer | en |
| dc.subject | MOS capacitor | en |
| dc.subject | High-k material | en |
| dc.title | 二氧化鉿薄膜成長於矽鍺磊晶層上的介面熱行為 | zh_TW |
| dc.title | Thermal Behaviors of Interface Layer in ultra-thin HfO2 film grown on SiGe/Si substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪冠明,陳敏璋,楊斯博 | |
| dc.subject.keyword | 二氧化鉿,高介電質材料,矽鍺磊晶層,介面層,金氧半電容器, | zh_TW |
| dc.subject.keyword | Hafnium dioxide,High-k material,SiGe epitaxy layer,Interface layer,MOS capacitor, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
