Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58626
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorPin-Chun Shenen
dc.contributor.author沈品均zh_TW
dc.date.accessioned2021-06-16T08:22:48Z-
dc.date.available2019-03-18
dc.date.copyright2014-03-18
dc.date.issued2014
dc.date.submitted2014-01-24
dc.identifier.citation第一章
[1] Kurzweil, R., Schneider, M. L. & Schneider, M. L. The age of intelligent machines. Vol. 579 (MIT press Cambridge, 1990).
[2] 林清富, 光學與光電導論. 五南, (2012)
[3] Kazimierczuk, M. K. & Szaraniec, W. Electronic ballast for fluorescent lamps. Power Electronics, IEEE Transactions on 8, 386-395 (1993).
[4] Ronda, C. Phosphors for lamps and displays: an applicational view. J Alloy Compd 225, 534-538 (1995).
[5] Round, H. J. A note on carborundum. Electrical world 49, 309 (1907).
[6] Schubert, E. F., Gessmann, T. & Kim, J. K. Light emitting diodes. (Wiley Online Library, 2005).
[7] Nakamura, S., Pearton, S. & Fasol, G. The blue laser diode: the complete story. (Springer, 2000).
[8] Nakamura, S. in Photonics West'97. 26-35 (International Society for Optics and Photonics).
[9] Craford, M. G. High Power LEDs for Solid State Lighting. Journal of Light & Visual Environment 32, 58-62 (2008).
[10] http://ledsmagazine.com/products/29992
[11] Setlur, A. Phosphors for LED-based solid-state lighting. The Electrochemical Society Interface 16, 32 (2009).
[12] Li, X. et al. New yellow Ba0. 93Eu0. 07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light: Science & Applications 2, e50 (2013).
[13] Brainard, G. C. et al. The influence of various irradiances of artificial light, twilight, and moonlight on the suppression of pineal melatonin content in the Syrian hamster. Journal of pineal research 1, 105-119 (1984).
[14] Van Bommel, W. J. Non-visual biological effect of lighting and the practical meaning for lighting for work. Applied ergonomics 37, 461-466 (2006).
[15] Blask, D. E. et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer research 65, 11174-11184 (2005).
[16] Pauley, S. M. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Medical Hypotheses 63, 588-596 (2004).
[17] Brainard, G. C., Richardson, B. A., King, T. S. & Reiter, R. J. The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain research 294, 333-339 (1984).
[18] Hatonen, T., Alila-Johansson, A., Mustanoja, S. & Laakso, M.-L. Suppression of melatonin by 2000-lux light in humans with closed eyelids. Biological psychiatry 46, 827-831 (1999).
[19] Czeisler, C. A. et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. New England Journal of Medicine 332, 6-11 (1995).
[20] Jou, J. H. et al. Candle Light‐Style Organic Light‐Emitting Diodes. Advanced Functional Materials (2012).
[21] Jou, J.-H. & Hsieh, C.-Y. Illumination & Displays Candlelight-style organic LEDs: a safe lighting source after dusk.
[22] Ye, S., Xiao, F., Pan, Y., Ma, Y. & Zhang, Q. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Materials Science and Engineering: R: Reports 71, 1-34 (2010).
[23] Yang, W.-J., Luo, L., Chen, T.-M. & Wang, N.-S. Luminescence and energy transfer of Eu-and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED. Chemistry of materials 17, 3883-3888 (2005).
[24] Steigerwald, D. A. et al. Illumination with solid state lighting technology. Selected Topics in Quantum Electronics, IEEE Journal of 8, 310-320 (2002).
[25] 王書任, 林仁鈞, 讓LED發光的功臣. 科學發展, (2009).
[26] 鄒文正, 螢光粉的光學特性.
[27] Lin, C. C. & Liu, R.-S. Advances in phosphors for light-emitting diodes. The Journal of Physical Chemistry Letters 2, 1268-1277 (2011).
[28] Tyagi, M. et al. Effect of codoping on scintillation and optical properties of a Ce-doped Gd3Ga3Al2O12 scintillator. Journal of Physics D: Applied Physics 46, 475302 (2013).
[29] 張文豪, 徐子民, 半導體量子光學. 物理雙月刊, (2006)
[30] http://www.epochtimes.com/b5/13/10/24/n3993545.htm
[31] Hurst, C. The rare earth dilemma: China’s rare earth environmental and safety nightmare. Cutting Edge, November 10 (2010).
[32] Xu, S. & Liu, G. in World Automation Congress (WAC), 2012. 1-4 (IEEE).
[33] Abandoned mine impacts. (n.d.). Retrieved from http://www.tu.org/conservation/abandoned-mines-western-us/abandoned-mine-impacts
[34] Environmental Damage. Retrieved from http://web.mit.edu/12.000/www/m2016/finalwebsite/problems/environment.html
[35] Bradsher, K. Mitsubishi quietly cleans up its former refinery. The New York Times 8 (2011).
[36] Division of Mineral Resources. (1988). Solution Salt Mining. In Draft: Generic Environmental Impact Statement on the Oil, Gas, and Solution Mining Regulatory Program (13). Retrieved from http://www.dec.ny.gov/docs/materials_minerals_pdf/dgeisv2ch13.pdf
[37] Margonelli, L. Clean energy’s dirty little secret. The Atlantic (2009).
[38] Miranda, M., Blanco Uribe Q, A., Hernandez, L., Ochoa, G. & Yerena, E. All that glitters is not gold: balancing conservation and development in Venezuela's frontier forests. (World Resources Institute, 1998).
[39] Paul, J. & Campbell, G. Investigating rare earth element mine development in EPA region 8 and potential environmental impacts. Additional review by Region 8 (2011).
[40] U.S. Environmental Protection Agency, Office of Solid Waste. (1995). Human health and environmental damages from mining and mineral processing wastes. Retrieved from website: http://www.epa.gov/osw/nonhaz/industrial/special/mining/minedock/damage/damage.pdf
[41] Retrieved from website: http://web.mit.edu/12.000/www/m2016/finalwebsite/problems/environment.html
[42] Rare earth phosphor crisis. Osram, (2011).
[43] Bowers, M. J., McBride, J. R. & Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. Journal of the American Chemical Society 127, 15378-15379 (2005).
[44] Sapra, S., Mayilo, S., Klar, T. A., Rogach, A. L. & Feldmann, J. Bright White‐Light Emission from Semiconductor Nanocrystals: by Chance and by Design. Advanced Materials 19, 569-572 (2007).
[45] Shen, C.-C. & Tseng, W.-L. One-step synthesis of white-light-emitting quantum dots at low temperature. Inorganic chemistry 48, 8689-8694 (2009).
第二章
[1] Ledoux, G. et al. Crystalline silicon nanoparticles as carriers for the Extended Red Emission. Astronomy and Astrophysics 377, 707-720 (2001).
[2] Fox, M. Quantum Optics: An Introduction: An Introduction. Vol. 15 (Oxford university press, 2006).
[3] Scully, M. O., Zubairy, M. S. & Walmsley, I. A. Quantum optics. American Journal of Physics 67, 648 (1999).
[4] Sun, G. The Intersubband Approach to Si-based Lasers. (2010).
[5] S. Montanari. III-V compound semiconductor material systems [cited; Available from: http://web.tiscali.it/decartes/phd_html/III-Vms-latgap.png.
[6] Richtmyer, F. K., Kennard, E. H. & Lauritsen, T. Introduction to modern physics. (1955).
[7] Brus, L. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of chemical physics 79, 5566 (1983).
[8] Pejova, B. & Grozdanov, I. Structural and optical properties of chemically deposited thin films of quantum-sized bismuth (III) sulfide. Materials chemistry and physics 99, 39-49 (2006).
[9] Berger, L. I. Semiconductor materials. (CRC press, 1997).
[10] Talam, S., Karumuri, S. R. & Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnology 2012 (2012).
[11] Grundmann, M., Stier, O. & Bimberg, D. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Physical Review B 52, 11969 (1995).
[12] de Mello Donega, C. Synthesis and properties of colloidal heteronanocrystals. Chemical Society Reviews 40, 1512-1546 (2011).
[13] Vanithakumari, S. C. & Nanda, K. K. A One‐Step Method for the Growth of Ga2O3‐Nanorod‐Based White‐Light‐Emitting Phosphors. Advanced Materials 21, 3581-3584 (2009).
[14] Dalven, R. Calculation of effective masses in cubic CdS and CdSe. physica status solidi (b) 48, K23-K26 (1971).
[15] Fan, Z. & Lu, J. G. Zinc oxide nanostructures: synthesis and properties. Journal of nanoscience and nanotechnology 5, 1561-1573 (2005).
[16] UZAR, N. & Arikan, M. C. Synthesis and investigation of optical properties of ZnS nanostructures. Bulletin of Materials Science 34, 287-292 (2011).
[17] Brutting, W. Physics of organic semiconductors. (Wiley. com, 2006).
[18] List, E. J., Guentner, R., Scanducci de Freitas, P. & Scherf, U. The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene‐Type Materials. Advanced Materials 14, 374-378 (2002).
[19] Reichardt, C. & Welton, T. Solvents and solvent effects in organic chemistry. (John Wiley & Sons, 2011).
[20] Courtney, M., Spellmeyer, N., Jiao, H. & Kleppner, D. Classical, semiclassical, and quantum dynamics in the lithium Stark system. Physical Review A 51, 3604 (1995).
[21] Townsend, J. S. A modern approach to quantum mechanics. (University Science Books, 2000).
第三章
[1] Ozgur, U. et al. A comprehensive review of ZnO materials and devices. Journal of applied physics 98, 041301-041301-041103 (2005).
[2] Coleman, V. & Jagadish, C. Basic properties and applications of ZnO. Zinc Oxide Bulk, Thin films and Nanostructures, Processing, Properties and Applications, 1-20 (2006).
[3] Jin, C., Tiwari, A. & Narayan, R. J. Ultraviolet-illumination-enhanced photoluminescence effect in zinc oxide thin films. Journal of applied physics 98, 083707-083707-083707 (2005).
[4] Roy, V. et al. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Applied physics letters 83, 141-143 (2003).
[5] Moon, H., Nam, C., Kim, C. & Kim, B. Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition. Materials research bulletin 41, 2013-2017 (2006).
[6] Devlin, S., Aven, M. & Prener, J. Physics and chemistry of II-VI Compounds. ed. M. Aven and IS Prener, North-Holland Publishing Company, Amsterdam, 440-447 (1967).
[7] Haranath, D., Sahai, S., Mishra, S., Husain, M. & Shanker, V. Fabrication and electro-optic properties of a MWCNT driven novel electroluminescent lamp. Nanotechnology 23, 435704 (2012).
[8] Lokhande, C. et al. Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films. Thin Solid Films 330, 70-75 (1998).
[9] Velumani, S. & Ascencio, J. Formation of ZnS nanorods by simple evaporation technique. Applied Physics A 79, 153-156 (2004).
[10] Nadeem, M. & Ahmed, W. Optical properties of ZnS thin films. Turkish Journal of Physics 24, 651-659 (2000).
[11] Bhargava, R., Gallagher, D., Hong, X. & Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Physical Review Letters 72, 416 (1994).
[12] Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32, 751-767 (1976).
[13] Wang, X., Shi, J., Feng, Z., Li, M. & Li, C. Visible emission characteristics from different defects of ZnS nanocrystals. Physical Chemistry Chemical Physics 13, 4715-4723 (2011).
[14] Denzler, D., Olschewski, M. & Sattler, K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals. Journal of applied physics 84, 2841-2845 (1998).
[15] Lu, H.-H. et al. Excimer formation by electric field induction and side chain motion assistance in polyfluorenes. Macromolecules 38, 10829-10835 (2005).
[16] Brutting, W. Physics of organic semiconductors. (Wiley. com, 2006).
第四章
[1] Jagadish, C. and S.J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. 2011: Elsevier.
第五章
[1] Zhou, H., Qu, Y., Zeid, T. & Duan, X. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy & Environmental Science 5, 6732-6743 (2012).
[2] Wageh, S., Ling, Z. S. & Xu-Rong, X. Growth and optical properties of colloidal ZnS nanoparticles. Journal of Crystal Growth 255, 332-337 (2003).
[3] Yang, P. et al. Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials 12, 323 (2002).
[4] Zheng, W., Shao-Wen, C., Say Chye Joachim L. & Can X. Nanoparticle heterojunctions in ZnS–ZnO hybrid nanowires for visible-light-driven photocatalytic hydrogen generation. CrystEngComm 15, 5688-5693 (2013)
[5] Panda, A. B., Acharya, S. & Efrima, S. Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One‐Dimensional Properties. Advanced Materials 17, 2471-2474 (2005).
[6] Yang, C. et al. Optical properties of the ZnSe< equation>< sub> 1-x</sub>< font face='verdana'> Te</font>< sub> x</sub></equation> epilayers grown by molecular beam epitaxy. Journal of applied physics 83, 2555-2559 (1998).
[7] Jiang, Y. et al. Zinc selenide nanoribbons and nanowires. The Journal of Physical Chemistry B 108, 2784-2787 (2004).
[8] Ren, J. et al. ZnSe light‐emitting diodes. Applied physics letters 57, 1901-1903 (1990).
[9] Wagner, G. J. et al. Continuous-wave broadly tunable Cr< sup> 2+</sup>: ZnSe laser. Optics letters 24, 19-21 (1999).
[10] Shen, C.-C. & Tseng, W.-L. One-step synthesis of white-light-emitting quantum dots at low temperature. Inorganic chemistry 48, 8689-8694 (2009).
[11] Fang, X. et al. Tuning and Enhancing White Light Emission of II–VI Based Inorganic–Organic Hybrid Semiconductors as Single-Phased Phosphors. Chemistry of Materials 24, 1710-1717 (2012).
[12] Zhong, X., Han, M., Dong, Z., White, T. J. & Knoll, W. Composition-Tunable Zn x Cd1-x Se Nanocrystals with High Luminescence and Stability. Journal of the American Chemical Society 125, 8589-8594 (2003).
[13] Yang, Z. et al. On-nanowire spatial band gap design for white light emission. Nano letters 11, 5085-5089 (2011).
[14] Hu, Y. et al. A microwave-assisted rapid route to synthesize ZnO/ZnS core–shell nanostructures via controllable surface sulfidation of ZnO nanorods. CrystEngComm 13, 3438-3443 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58626-
dc.description.abstract本研究提出具有新的光轉換程序的螢光材料,是利用半導體奈米結構來取代稀土元素d-f電子躍遷的激發與放射機制,此系統可以解決白光LED螢光粉對於稀土元素的依賴,以避免持續的過度開採稀土而對環境造成嚴重的迫害。

本研究內容可以分為三個部分,第一部分為開發一種可以將紫外光轉換成暖色系白光的奈米複合材料,其結構是在ZnS:Mn (ZMS)與ZnO半導體奈米粒子表面聚合上高分子poly(9,9-di-n-hexylfluorenyl-2,7-diyl) (PF),形成類似核-殼(core-shell)的奈米結構。此奈米結構中設計有三種不同的電子電洞複合機制,因此可釋放三種不同能量之光子,在紫外光的激發下,經由電子躍遷而產生藍光、綠光與橘紅光,進而合成白光。此藍光、綠光與橘紅光的相對強度具有調變性,因此白光可以涵蓋色溫2100K左右的燭光以及色溫6000K以上的冷白光。
第二部分則針對上述的半導體奈米複合材料進行量子效率的最佳化,分別從材料反應濃度、材料厚度、奈米材料的尺寸與激發波長來探討其對量子效率的影響。在參數最佳化之後,暖白光與冷白光材料系統之量子效率皆可以到達到80 %以上。

在本研究的第三部分為擴展本材料架構之應用性,利用半導體奈米材料設計可利用藍光進行光致發光的系統,我們提出了兩種不同的材料結構,分別為(i) ZnS:Mn/ZnO/PF三層結構之粒子 (ii)參雜錳之硒化鋅奈米粒子(ZnSe:Mn)。其中在(i)系統中,利用ZnO與ZnS:Mn接面間的電子轉移(interfacial transition),可將ZnS:Mn價帶的電子以藍光激發到ZnO的傳導帶,這些激發電子可經由介面能態與電洞複合而達成光轉換的程序,此系統可以在400 nm ~ 430 nm的藍光激發下產生黃綠光。而在(ii)系統,我們合成能隙位於藍光波段的直接能隙半導體材料ZnSe:Mn,利用Mn離子之最外層d軌域受到ZnSe晶格場的量子微擾效應,分裂為兩個不同能態,利用電子於此能態之躍遷進行藍光轉換為橘光的光物理程序,而將400nm ~ 460 nm的藍光轉換成峰值在580 nm ~ 600 nm的橘光。

本研究所提出的光物理程序,可成功將紫外光或藍光經由半導體奈米結構轉換為較長波長之可見光,此方法不但具有相當高的發光效率且其材料可利用低溫溶液製程合成,更重要的是其發光機制不必再依賴價格昂貴且不環保的稀土元素,本材料具有很大的潛力作為新世代LED固態照明之螢光材料。
zh_TW
dc.description.abstractCurrently available methods for white light emission, either based on rare-earth doped phosphors or cadmium-contained quantum dots, are associated with high environmental cost of rare-earth mining or cadmium pollution. Here we present a cutting-edge nanotechnology based on semiconductor nanostructured composites that give warm-white-light emission and efficient luminescence conversion.
The elaborately designed nanocomposites presented in fisrt part encompass three different electron-hole-recombination mechanisms, which can contribute to photon emissions at blue, green and orange light. Benefiting from the controllable photon-emission mechanisms, wide tunablity of color temperature from near 2100 K to above 6000 K, including both candle light and pure white light, has been attainable, providing a forward-looking property for luminescent materials of solid-state lighting.
In second part, we focus on improving the quantum efficiency of the nanocomposites. By optimizing the excitation wavelength, size of nanoparticles, thickness of the nanocomposites, and component ratios, the nanoscale composites composed of wide band gap materials can effectively reduce emission loss caused by scattering and self-absorption, and thus a high quantum efficiency above 80 % can be achieved.
In third part, we present two novel luminescenct systems for blue-pumped white-light-emitting-diodes (white-LEDs). These two systems, ZnS:Mn/ZnO/PF multilayer particles and ZnSe:Mn nanoparticles, can achieve wavelength down-conversion from blue light to yellow and orange light, respectively.
In this work, the innovative approaches for luminescence conversion can serve as an energy-saving and environmentally benign technology for white-LED lighting applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:22:48Z (GMT). No. of bitstreams: 1
ntu-103-R00941116-1.pdf: 6590563 bytes, checksum: c18ca2bb072d374ced25629aca36a420 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………II
致謝…………………………………………………………………………………III
摘要…………………………………………………………………………………VI
ABSTRACT………………………………………………………………………VIII
目錄…………………………………………………………………………………X
圖目錄……………………………………………………………………………XIII
表目錄……………………………………………………………………………XVI
第一章 緒論…………………………………………………………………………1
1.1 照明光源之發展與其未來趨勢 1
1.2 新世代照明技術:白光LED原理 6
1.2.1 多晶片型(Multi Chip) 6
1.2.2 藍光 LED + 黃光螢光粉 6
1.2.3 藍光 LED + 黃光(或綠色)螢光粉與紅光螢光粉 7
1.2.4 紫外光LED + 藍色、綠色與紅色螢光粉 8
1.3 白光LED螢光粉介紹 9
1.3.1 參雜稀土元素之陶瓷型螢光粉 9
1.3.2 參雜稀土元素之陶瓷型螢光粉其激發與發光原理 11
1.3.3 奈米晶體量子點螢光粉(Nanocrystal Quantum Dots, NQDs) 13
1.3.4 奈米晶體量子點螢光粉發光原理 14
1.4 稀土螢光粉與量子點對於白光LED發展之隱憂 15
1.5 研究動機 18
1.6 參考文獻 18
第二章 實驗原理……………………………………………………………………22
2.1 半導體光電物理 22
2.1.1 半導體之光子吸收與光子放射機制 22
2.1.2 電子躍遷之量子理論 23
2.1.3 半導體奈米材料之量子侷限效應(Quantum Confinement Effect) 26
2.2 導電高分子之光物理程序 29
2.3 量子力學之電場微擾效應: (STARK EFFECT) 33
2.4 參考文獻…………………………………………………………………34
第三章 可利用紫外光激發白光之半導體奈米結構………………………………36
3.1 研究動機 37
3.2 材料特性介紹 37
3.2.1 氧化鋅材料特性 37
3.2.2 Poly(9,9-di-n-hexylfluorenyl-2,7-diyl)材料特性 39
3.2.3 ZnS材料特性 41
3.3 實驗設計:紫外光轉換白光之電子電洞複合機制設計 43
3.4 實驗步驟 44
3.4.1 ZnS:Mn (ZMS) 奈米粒子之合成 44
3.4.2 ZMS(PF)ZnO半導體奈米複合材料之合成 45
3.5 實驗結果與討論 46
3.5.1 ZnS:Mn奈米粒子材料結構與表面形貌 46
3.5.2 Mn2+參雜濃度對ZnS:Mn奈米粒子其光學性質之影響 47
3.5.2 ZnS:Mn濃度對ZMS(PF)ZnO白光特性之影響 52
3.5.3 激發波長對ZMS(PF)ZnO白光特性之影響 63
3.6 結論 66
3.7 參考文獻 67
第四章 提升半導體奈米結構之量子效率…………………………………………69
4.1 研究動機 70
4.2 實驗步驟 71
4.2.1 ZnS:Mn (ZMS) 奈米粒子之合成 71
4.2.2 ZMS(PF)ZnO半導體奈米複合材料之合成 72
4.2.3 PF(ZnO)冷白光材料之合成 73
4.3 實驗結果與討論 74
4.3.1 PF有機材料濃度對發光效率之影響 74
4.3.2 激發波長對材料發光效率之影響 75
4.3.3 ZnO奈米粒子粒徑對發光效率之影響 82
4.3.4 旋塗厚度對發光效率之影響 83
4.4 結論 84
4.5 參考文獻 84
第五章: 藍光激發之半導體螢光材料開發………………………………………85
5.1 研究動機 86
5.2 簡介 86
5.2.1 Type II Heterojunction: ZnS/ZnO Interfacial Transition 86
5.2.2 ZnSe材料介紹 87
5.3 實驗步驟 88
5.3.1 ZnS:Mn/ZnO/PF奈米結構之製作 88
5.3.2 ZnSe:Mn奈米粒子之合成 88
5.4 實驗結果與討論 90
5.4.1 ZnS:Mn/ZnO/PF材料特性分析 90
5.4.2 ZnS:Mn/ZnO/PF之發光特性 93
5.4.3 成長溫度對ZnSe:Mn奈米粒子結晶性與粒徑之影響 95
5.4.4 成長溫度對ZnSe:Mn奈米粒子光學特性之影響 99
5.5 結論 107
5.6 參考文獻 107
第六章: 結論與未來展望…………………………………………………………109
6.1 結論 109
6.2 未來展望 111
dc.language.isozh-TW
dc.subject硫化鋅zh_TW
dc.subject硒化鋅zh_TW
dc.subject氧化鋅zh_TW
dc.subject光子zh_TW
dc.subject半導體奈米結構zh_TW
dc.subject螢光粉zh_TW
dc.subject白光發光二極體zh_TW
dc.subjectzinc selenideen
dc.subjectphosphorsen
dc.subjectsemiconductor nanostructuresen
dc.subjectphotonicsen
dc.subjectzinc oxideen
dc.subjectzinc sulfideen
dc.subjectwhite-light-emitting diodesen
dc.title半導體奈米結構於白光LED高效率螢光材料之應用zh_TW
dc.titleEfficiently Luminescent Materials Based on Semiconductor Nanostructures for White-Light-Emitting Diodesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志毅(Chih-I Wu),蘇國棟(Guo-Dung Su),黃鼎偉(Ding-Wei Huang)
dc.subject.keyword白光發光二極體,螢光粉,半導體奈米結構,光子,氧化鋅,硒化鋅,硫化鋅,zh_TW
dc.subject.keywordwhite-light-emitting diodes,phosphors,semiconductor nanostructures,photonics,zinc oxide,zinc sulfide,zinc selenide,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2014-01-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved