Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭培文(Pei-Wen Hsiao),李明亭(Ming-Ting Lee)
dc.contributor.authorChin-Hsien Tsaien
dc.contributor.author蔡進賢zh_TW
dc.date.accessioned2021-06-16T08:22:40Z-
dc.date.available2014-03-09
dc.date.copyright2014-03-09
dc.date.issued2014
dc.date.submitted2014-01-25
dc.identifier.citationAbate-Shen, C., and Shen, M. M. (2000). Molecular genetics of prostate cancer. Genes & development 14, 2410-2434.
Acharyya, S., Oskarsson, T., Vanharanta, S., Malladi, S., Kim, J., Morris, P. G., Manova-Todorova, K., Leversha, M., Hogg, N., Seshan, V. E., et al. (2012). A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165-178.
Ammirante, M., Kuraishy, A. I., Shalapour, S., Strasner, A., Ramirez-Sanchez, C., Zhang, W., Shabaik, A., and Karin, M. (2013). An IKKalpha-E2F1-BMI1 cascade activated by infiltrating B cells controls prostate regeneration and tumor recurrence. Genes & development 27, 1435-1440.
Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S., and Karin, M. (2010). B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302-305.
Arnold, J. T., and Isaacs, J. T. (2002). Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell's fault. Endocrine-related cancer 9, 61-73.
Bachmeier, B. E., Mohrenz, I. V., Mirisola, V., Schleicher, E., Romeo, F., Hohneke, C., Jochum, M., Nerlich, A. G., and Pfeffer, U. (2008). Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis 29, 779-789.
Begley, L. A., Kasina, S., Mehra, R., Adsule, S., Admon, A. J., Lonigro, R. J., Chinnaiyan, A. M., and Macoska, J. A. (2008). CXCL5 promotes prostate cancer progression. Neoplasia 10, 244-254.
Bitting, R. L., and Armstrong, A. J. (2013). Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocrine-related cancer 20, R83-99.
Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J., and Terzis, A. J. (2005). Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature reviews Cancer 5, 899-904.
Bollrath, J., and Greten, F. R. (2009). IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO reports 10, 1314-1319.
Bubendorf, L., Schopfer, A., Wagner, U., Sauter, G., Moch, H., Willi, N., Gasser, T. C., and Mihatsch, M. J. (2000). Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Human pathology 31, 578-583.
Carver, B. S., Chapinski, C., Wongvipat, J., Hieronymus, H., Chen, Y., Chandarlapaty, S., Arora, V. K., Le, C., Koutcher, J., Scher, H., et al. (2011). Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer cell 19, 575-586.
Center, M. M., Jemal, A., Lortet-Tieulent, J., Ward, E., Ferlay, J., Brawley, O., and Bray, F. (2012). International variation in prostate cancer incidence and mortality rates. European urology 61, 1079-1092.
Chandarlapaty, S., Sawai, A., Scaltriti, M., Rodrik-Outmezguine, V., Grbovic-Huezo, O., Serra, V., Majumder, P. K., Baselga, J., and Rosen, N. (2011). AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer cell 19, 58-71.
Chang, K. H., Li, R., Kuri, B., Lotan, Y., Roehrborn, C. G., Liu, J., Vessella, R., Nelson, P. S., Kapur, P., Guo, X., et al. (2013). A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154, 1074-1084.
Chaturvedi, M. M., Sung, B., Yadav, V. R., Kannappan, R., and Aggarwal, B. B. (2011). NF-kappaB addiction and its role in cancer: 'one size does not fit all'. Oncogene 30, 1615-1630.
Chen, L., Mooso, B. A., Jathal, M. K., Madhav, A., Johnson, S. D., van Spyk, E., Mikhailova, M., Zierenberg-Ripoll, A., Xue, L., Vinall, R. L., et al. (2011). Dual EGFR/HER2 inhibition sensitizes prostate cancer cells to androgen withdrawal by suppressing ErbB3. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 6218-6228.
Cheng, G. Z., Park, S., Shu, S., He, L., Kong, W., Zhang, W., Yuan, Z., Wang, L. H., and Cheng, J. Q. (2008). Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Current cancer drug targets 8, 2-6.
De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C. G., Nakai, Y., Isaacs, W. B., and Nelson, W. G. (2007). Inflammation in prostate carcinogenesis. Nature reviews Cancer 7, 256-269.
Dhawan, P., and Richmond, A. (2002). Role of CXCL1 in tumorigenesis of melanoma. Journal of leukocyte biology 72, 9-18.
Fang, J., Zhou, Q., Liu, L. Z., Xia, C., Hu, X., Shi, X., and Jiang, B. H. (2007a). Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis 28, 858-864.
Fang, J., Zhou, Q., Shi, X. L., and Jiang, B. H. (2007b). Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis 28, 713-723.
Gabrilovich, D. I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature reviews Immunology 12, 253-268.
Gao, D., and Mittal, V. (2009). The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends in molecular medicine 15, 333-343.
Guo, Z. S., Wang, L. H., Eisensmith, R. C., and Woo, S. L. (1996). Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene therapy 3, 802-810.
Hamasuna, R., Kataoka, H., Meng, J. Y., Itoh, H., Moriyama, T., Wakisaka, S., and Koono, M. (2001). Reduced expression of hepatocyte growth factor activator inhibitor type-2/placental bikunin (HAI-2/PB) in human glioblastomas: implication for anti-invasive role of HAI-2/PB in glioblastoma cells. International journal of cancer Journal international du cancer 93, 339-345.
Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Hayden, M. S., and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell 132, 344-362.
Hermani, A., De Servi, B., Medunjanin, S., Tessier, P. A., and Mayer, D. (2006). S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Experimental cell research 312, 184-197.
Hermani, A., Hess, J., De Servi, B., Medunjanin, S., Grobholz, R., Trojan, L., Angel, P., and Mayer, D. (2005). Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 5146-5152.
Hiratsuka, S., Watanabe, A., Aburatani, H., and Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature cell biology 8, 1369-1375.
Hsu, C. H., Peng, K. L., Kang, M. L., Chen, Y. R., Yang, Y. C., Tsai, C. H., Chu, C. S., Jeng, Y. M., Chen, Y. T., Lin, F. M., et al. (2012). TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell reports 2, 568-579.
Huber, M. A., Kraut, N., and Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Current opinion in cell biology 17, 548-558.
Huggins, C., and Hodges, C. V. (2002). Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. The Journal of urology 168, 9-12.
Ishizaki, F., Nishiyama, T., Kawasaki, T., Miyashiro, Y., Hara, N., Takizawa, I., Naito, M., and Takahashi, K. (2013). Androgen deprivation promotes intratumoral synthesis of dihydrotestosterone from androgen metabolites in prostate cancer. Scientific reports 3, 1528.
Jain, G., Voogdt, C., Tobias, A., Spindler, K. D., Moller, P., Cronauer, M. V., and Marienfeld, R. B. (2012). IkappaB kinases modulate the activity of the androgen receptor in prostate carcinoma cell lines. Neoplasia 14, 178-189.
Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA: a cancer journal for clinicians 61, 69-90.
Jia, X., Li, X., Xu, Y., Zhang, S., Mou, W., Liu, Y., Liu, Y., Lv, D., Liu, C. H., Tan, X., et al. (2011). SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. Journal of molecular cell biology 3, 230-238.
Jin, X., Yagi, M., Akiyama, N., Hirosaki, T., Higashi, S., Lin, C. Y., Dickson, R. B., Kitamura, H., and Miyazaki, K. (2006). Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer science 97, 1327-1334.
Joyce, J. A., and Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature reviews Cancer 9, 239-252.
Karin, M., and Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature reviews Immunology 5, 749-759.
Kataoka, H., Hamasuna, R., Itoh, H., Kitamura, N., and Koono, M. (2000a). Activation of hepatocyte growth factor/scatter factor in colorectal carcinoma. Cancer research 60, 6148-6159.
Kataoka, H., Shimomura, T., Kawaguchi, T., Hamasuna, R., Itoh, H., Kitamura, N., Miyazawa, K., and Koono, M. (2000b). Hepatocyte growth factor activator inhibitor type 1 is a specific cell surface binding protein of hepatocyte growth factor activator (HGFA) and regulates HGFA activity in the pericellular microenvironment. The Journal of biological chemistry 275, 40453-40462.
Kawaguchi, T., Qin, L., Shimomura, T., Kondo, J., Matsumoto, K., Denda, K., and Kitamura, N. (1997). Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. The Journal of biological chemistry 272, 27558-27564.
Keeley, E. C., Mehrad, B., and Strieter, R. M. (2008). Chemokines as mediators of neovascularization. Arteriosclerosis, thrombosis, and vascular biology 28, 1928-1936.
Killian, P. H., Kronski, E., Michalik, K. M., Barbieri, O., Astigiano, S., Sommerhoff, C. P., Pfeffer, U., Nerlich, A. G., and Bachmeier, B. E. (2012). Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis 33, 2507-2519.
Koumakpayi, I. H., Le Page, C., Mes-Masson, A. M., and Saad, F. (2010). Hierarchical clustering of immunohistochemical analysis of the activated ErbB/PI3K/Akt/NF-kappaB signalling pathway and prognostic significance in prostate cancer. British journal of cancer 102, 1163-1173.
Kuo, P. L., Chen, Y. H., Chen, T. C., Shen, K. H., and Hsu, Y. L. (2011). CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway. Journal of cellular physiology 226, 1224-1231.
Kuo, P. L., Shen, K. H., Hung, S. H., and Hsu, Y. L. (2012). CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis 33, 2477-2487.
Lam, W., Bussom, S., Guan, F., Jiang, Z., Zhang, W., Gullen, E. A., Liu, S. H., and Cheng, Y. C. (2010). The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Science translational medicine 2, 45ra59.
Lee, S. L., Dickson, R. B., and Lin, C. Y. (2000). Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. The Journal of biological chemistry 275, 36720-36725.
Lee, Y. J., Lin, W. L., Chen, N. F., Chuang, S. K., and Tseng, T. H. (2012). Demethylwedelolactone derivatives inhibit invasive growth in vitro and lung metastasis of MDA-MB-231 breast cancer cells in nude mice. European journal of medicinal chemistry 56, 361-367.
Lin, F. M., Chen, L. R., Lin, E. H., Ke, F. C., Chen, H. Y., Tsai, M. J., and Hsiao, P. W. (2007). Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells. Carcinogenesis 28, 2521-2529.
Lin, S. C., Lin, C. C., Lin, Y. H., and Shyuu, S. J. (1994). Hepatoprotective effects of Taiwan folk medicine: wedelia chinensis on three hepatotoxin-induced hepatotoxicity. The American journal of Chinese medicine 22, 155-168.
Linja, M. J., and Visakorpi, T. (2004). Alterations of androgen receptor in prostate cancer. The Journal of steroid biochemistry and molecular biology 92, 255-264.
Luo, J. L., Tan, W., Ricono, J. M., Korchynskyi, O., Zhang, M., Gonias, S. L., Cheresh, D. A., and Karin, M. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446, 690-694.
Mancino, M., Ametller, E., Gascon, P., and Almendro, V. (2011). The neuronal influence on tumor progression. Biochimica et biophysica acta 1816, 105-118.
Massard, C., and Fizazi, K. (2011). Targeting continued androgen receptor signaling in prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 3876-3883.
Mellinghoff, I. K., Vivanco, I., Kwon, A., Tran, C., Wongvipat, J., and Sawyers, C. L. (2004). HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer cell 6, 517-527.
Nadiminty, N., Lou, W., Sun, M., Chen, J., Yue, J., Kung, H. J., Evans, C. P., Zhou, Q., and Gao, A. C. (2010). Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer research 70, 3309-3319.
Nakanishi, C., and Toi, M. (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nature reviews Cancer 5, 297-309.
Nelson, E. C., Evans, C. P., Mack, P. C., Devere-White, R. W., and Lara, P. N., Jr. (2007). Inhibition of Akt pathways in the treatment of prostate cancer. Prostate cancer and prostatic diseases 10, 331-339.
Nelson, P. S., and Montgomery, B. (2003). Unconventional therapy for prostate cancer: good, bad or questionable? Nature reviews Cancer 3, 845-858.
Oberst, M., Anders, J., Xie, B., Singh, B., Ossandon, M., Johnson, M., Dickson, R. B., and Lin, C. Y. (2001). Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. The American journal of pathology 158, 1301-1311.
Oberst, M. D., Johnson, M. D., Dickson, R. B., Lin, C. Y., Singh, B., Stewart, M., Williams, A., al-Nafussi, A., Smyth, J. F., Gabra, H., and Sellar, G. C. (2002). Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clinical cancer research : an official journal of the American Association for Cancer Research 8, 1101-1107.
Ohmori, Y., and Hamilton, T. A. (1993). Cooperative interaction between interferon (IFN) stimulus response element and kappa B sequence motifs controls IFN gamma- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. The Journal of biological chemistry 268, 6677-6688.
Osada, M., Imaoka, S., and Funae, Y. (2004). Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS letters 575, 59-63.
Pratheeshkumar, P., Son, Y. O., Budhraja, A., Wang, X., Ding, S., Wang, L., Hitron, A., Lee, J. C., Kim, D., Divya, S. P., et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PloS one 7, e52279.
Quintieri, L., Palatini, P., Nassi, A., Ruzza, P., and Floreani, M. (2008). Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochemical pharmacology 75, 1426-1437.
Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., Leake, D., Godden, E. L., Albertson, D. G., Nieto, M. A., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123-127.
Sale, E. M., and Sale, G. J. (2008). Protein kinase B: signalling roles and therapeutic targeting. Cellular and molecular life sciences : CMLS 65, 113-127.
Saleem, M., Adhami, V. M., Zhong, W., Longley, B. J., Lin, C. Y., Dickson, R. B., Reagan-Shaw, S., Jarrard, D. F., and Mukhtar, H. (2006). A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 15, 217-227.
Sameksha Koul, A. P., RL Khosa (2012). Wedelia chinenis (Asteraceae) – An overview. Asian Pacific Journal of Tropical Biomedicine 2.
Sarveswaran, S., Gautam, S. C., and Ghosh, J. (2012). Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCepsilon without inhibiting Akt. International journal of oncology 41, 2191-2199.
Satelli, A., and Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and molecular life sciences : CMLS 68, 3033-3046.
Scher, H. I., Buchanan, G., Gerald, W., Butler, L. M., and Tilley, W. D. (2004). Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocrine-related cancer 11, 459-476.
Shen, M. M., and Abate-Shen, C. (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes & development 24, 1967-2000.
Shimomura, T., Denda, K., Kitamura, A., Kawaguchi, T., Kito, M., Kondo, J., Kagaya, S., Qin, L., Takata, H., Miyazawa, K., and Kitamura, N. (1997). Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. The Journal of biological chemistry 272, 6370-6376.
Shukla, S., and Gupta, S. (2009). Apigenin suppresses insulin-like growth factor I receptor signaling in human prostate cancer: an in vitro and in vivo study. Molecular carcinogenesis 48, 243-252.
Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature reviews Cancer 3, 768-780.
Takeuchi, T., Harris, J. L., Huang, W., Yan, K. W., Coughlin, S. R., and Craik, C. S. (2000). Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. The Journal of biological chemistry 275, 26333-26342.
Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2, 442-454.
Toh, B., Wang, X., Keeble, J., Sim, W. J., Khoo, K., Wong, W. C., Kato, M., Prevost-Blondel, A., Thiery, J. P., and Abastado, J. P. (2011). Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS biology 9, e1001162.
Trusolino, L., and Comoglio, P. M. (2002). Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature reviews Cancer 2, 289-300.
Tsai, C. H., Lin, F. M., Yang, Y. C., Lee, M. T., Cha, T. L., Wu, G. J., Hsieh, S. C., and Hsiao, P. W. (2009). Herbal extract of Wedelia chinensis attenuates androgen receptor activity and orthotopic growth of prostate cancer in nude mice. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 5435-5444.
Tsai, C. H., Teng, C. H., Tu, Y. T., Cheng, T. S., Wu, S. R., Ko, C. J., Shyu, H. Y., Lan, S. W., Huang, H. P., Tzeng, S. F., et al. (2013). HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene.
Tsao, C. K., Galsky, M. D., Small, A. C., Yee, T., and Oh, W. K. (2012). Targeting the androgen receptor signalling axis in castration-resistant prostate cancer (CRPC). BJU international 110, 1580-1588.
Ustach, C. V., Huang, W., Conley-LaComb, M. K., Lin, C. Y., Che, M., Abrams, J., and Kim, H. R. (2010). A novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate cancer. Cancer research 70, 9631-9640.
Welch, H. G., and Albertsen, P. C. (2009). Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986-2005. Journal of the National Cancer Institute 101, 1325-1329.
Weng, C. J., and Yen, G. C. (2012). Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer metastasis reviews 31, 323-351.
Wu, S. R., Cheng, T. S., Chen, W. C., Shyu, H. Y., Ko, C. J., Huang, H. P., Teng, C. H., Lin, C. H., Johnson, M. D., Lin, C. Y., and Lee, M. S. (2010). Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. The American journal of pathology 177, 3145-3158.
Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., Geng, Y., Gray, J. W., Moses, H. L., and Yang, L. (2010). Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer research 70, 6139-6149.
Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., Carbone, D. P., Matrisian, L. M., Richmond, A., Lin, P. C., and Moses, H. L. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer cell 13, 23-35.
Zhang, Y., Huo, M., Zhou, J., and Xie, S. (2010). PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Computer methods and programs in biomedicine 99, 306-314.
Zhu, P., Baek, S. H., Bourk, E. M., Ohgi, K. A., Garcia-Bassets, I., Sanjo, H., Akira, S., Kotol, P. F., Glass, C. K., Rosenfeld, M. G., and Rose, D. W. (2006). Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124, 615-629.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58623-
dc.description.abstract對賀爾蒙療法有抗性的癌症與轉移的癌細胞是前列腺癌治療上的一大挑戰,發展前列腺癌動物模式來研究癌症的惡化過程和有效的治療方式是重要且急迫的任務。在這個研究中,我們利用前列腺癌細胞株(22Rv1) 建立原位腫瘤小鼠模式,以初代培養的方式獲得高轉移性的腫瘤細胞。我們的研究發現,隨著前列腺癌症的惡化過程中癌細胞表現的間質蛋白酶(matriptase)會活化而促進癌細胞轉移。因為,matriptase的抑制蛋白,第二型肝細胞生長因子活化抑制因子(HAI-2),表現量會隨著癌惡化呈下降的趨勢。此外,在草藥治療前列腺癌的研究中,我們經由PSA啟動子活性的測定,鑑定出黃花蜜菜酒精抽出物中主要的活性成分( Wedelolectone ,Luteolin,Apigenin),研究發現這些活性成分在抑制前列腺癌細胞生長有協同作用。然而,傳統草藥缺乏詳細、正確的有效成分組成的資料,使其在臨床使用上受到限制。因此,我們使用製備級的液相層析儀截取出富含有效成分的區段,並以LC/MS/MS定性定量分析主要的成分。在比較不同批次之後,通過此定義的草藥精華(WCE),皆含有一定比例的活性成分且能有效的抑制腫瘤生長。在活性成分間對抑制前列腺癌具有協同作用,此外,我們以藥物動力學分析證明了WCE草藥的組成可以增加活性成分的吸收並減緩活性成分的清除,因而增加在體內的作用時間,進一步增加療效。抗癌機制分析上,我們發現WCE有效地抑制雄性激素受體 (androgen receptor)、 HER2/3和AKT信號路徑與回饋機制,因此增強了荷爾蒙療法的效果,防止初期療效反應之後經常發生的抗藥性。儘管HER2/3和AKT的抑制未能引起對賀爾蒙治療有抗性的前列腺癌細胞(PC-3)體外的凋亡, 然而在動物實驗中,WCE卻可以抑制癌細胞引起的骨髓細胞(MDSCs)的趨化作用,進而抑制前列腺腫瘤的生長和轉移。因此,WCE可以結合賀爾蒙療法去提升治療成效,也可以調節癌症免疫而抑制前列腺癌細胞(PC-3)的轉移。zh_TW
dc.description.abstractRecurrences of hormone-refractory and metastatic prostate cancer (PCa) both highly affect the treatment outcome. Developing the orthotopic PCa animal model to study the cancer progression and effective therapy is the critical mission. Here, we established the orthotopic xenograft mouse model of PCa cell line, 22Rv1, cultured the different stages of tumor cells, and repeated the same procedure to get highly metastatic cells. In this model, we found that HAI-2, a matriptase inhibitor, is decreased during PCa progression, which enhanced the invasive growth and metastasis capacity of PCa cells. This effect was reversed by either ectopic expression of HAI-2 or matriptase knockdown, indicating that derepression of matriptase from HAI-2 contributed to the cancer metastasis. Besides, we used Prostatic Specific Antigen (PSA) promoter activity assay to identify the principal active compounds (wedelolectone, luteolin, and apigenin) in the herbal ethanol extract of Wedelia chinensis and demonstrated the active compounds synergistically inhibited AR-positive PCa cell growth in vitro and in vivo. To promote the potential clinical use as a botanical drug, we developed a standardized preparation of a W. chinensis extract (WCE) by enrichment and quantification of the principal active compounds and analyses of the in vivo biological activities. Pharmacokinetic analyses of active compounds upon oral administration with WCE indicated that presence of copurifiied other compounds in WCE prolonged the systemic exposure to active compounds over a formula of the pure active compounds. In agreement, the resulting anti-tumor efficacy of WCE was higher than the formula of pure active compounds. Furthermore, WCE effectively disrupted the androgen receptor, HER2/3, and AKT signaling network and therefore enhanced therapeutic efficacy of androgen ablation in PCa. While HER2/3 and AKT inhibition by WCE failed to induce apoptosis in hormone-refractory PCa cells, WCE curbed PCa-induced chemotaxis of myeloid cells and the tumor-microenvironment interactions, thus impairing PCa growth and metastasis. In conclusion, the imbalance between HAI-2 and matriptase expression led to matriptase activation, thereby increasing PCa metastasis. In herbal medicine study, we demonstrated that standardized, characterized preparations of WCE improved the outcome of PCa therapy either as an add-on to hormonal therapy for androgen-dependent disease or as a monotherapy for hormone-refractory disease.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:22:40Z (GMT). No. of bitstreams: 1
ntu-103-D96b46014-1.pdf: 23668081 bytes, checksum: f936f954ab5d5c07ef8b6a2e7887273b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTITLE PAGE……………………….……………………………………………………i
口試委員會審定書……………….…………………….………………………...…ii
ABSTRACT…………………………………………………………………….......…iii
CHINESE ABSTRACT……………………………………...……………………...…v
TABLE of CONTENTS……………………………………………..………………...vii
LIST OF ILLUSTRATIONS……………………………………...…..……………….ix
LIST OF TABLES……………………………………………………………….……xii
ABBREVIATIONS………………………………...……………………..…………xiii
Chapter 1: General Introduction……………………………………………………..1
1.1 Prostate cancer progression…………………………………………………….3
1.2 The androgen receptor function and castration-resistance…………………….3
1.3 PI3K-AKT pathway in cancer…………………………………………………8
1.4 The roles of NFκB signaling in prostate cancer progression………..……….13
1.5 Significance and purpose……………………………………………………..21
Chapter 2: Development of prostate cancer orthotopic model and the study of matriptase/HAI-2 axis in cancer progression…………………………23
2.1 Introduction…………………………………………………………………..24
2.2 Materials and Methods…………………………………………………….…27
2.3 Results………………………………………………………………………..31
2.4 Discussion………………………………………………………….…………52
Chapter 3: Therapeutic effects and mechanisms of characterized Wedelia chinensis extract (WCE) on prostate cancer…………………….……55
3.1 Introduction………………………………………………………………..…56
3.2 Materials and Methods………………………………….……………………58
3.3 Results……………………………………………………………………..…67
3.4 Discussion……………………………………………...……………………106
Chapter 4: Conclusion and Perspective………………...…………………………112
BIBLIOGRAPHY………………...……………………………………………….…117
dc.language.isoen
dc.title黃花蜜菜抽出物治療前列腺癌功能與機轉之研究zh_TW
dc.titleStudy for therapeutic effects and mechanisms of Wedelia chinensis extract on prostate canceren
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee柯逢春(Fon-Chun Ke),黃娟娟(Jiuan-Jiuan Hwang),李明學(Ming-Shyue Lee)
dc.subject.keyword攝護腺癌,第二型肝細胞生長因子活化抑制因子,間質蛋白?,草藥醫學,動物模式,癌細胞轉移,賀爾蒙阻斷療法,zh_TW
dc.subject.keywordprostate cancer,HAI-2,matriptase,herbal medicine,animal model,cancer metastasis,androgen ablation,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2014-01-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
23.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved