請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58622
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾鈞懋(Chun-Mao Tseng) | |
dc.contributor.author | Chang-Syue Ji | en |
dc.contributor.author | 暨昌學 | zh_TW |
dc.date.accessioned | 2021-06-16T08:22:37Z | - |
dc.date.available | 2019-01-30 | |
dc.date.copyright | 2014-03-18 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-01-27 | |
dc.identifier.citation | 中文部分
郭生練(1995),氣候變化對洪水頻率和洪峰流量的影響。水科學進展。6,224-230。 吳志勇、陸桂華、劉志雨(2012),氣候變化背景下珠江流域極端洪水事件的變化趨勢。氣候變化研究進展。8,403-408。 陳衛忠、李長松、胡芬(1997),東海區海洋漁業資源近況淺析。中國水產科學。4,39-43。 賴星宇(2009),2008年晚春到初夏期間台灣周遭海域的二氧化碳交換通量與分佈。國立台灣師範大學海洋環境科技研究所碩士論文。 沈柏源(2010),2003年夏季東海表水二氧化碳之時空變化。 國立台灣大學海洋研究所碩士論文。 英文部分 Bates, B., Kundzewicz, Z.W. and Wu, S., 2008. Climate change and water: technical paper of the Intergovernmental Panel on Climate Change. Beardsley, R.C., Limeburner, R., Yu, H. and Cannon, G.A., 1985. Discharge of Changjiang ( Yantze River ) into the East China Sea. Cont. Shelf Res, 4: 57-76. Borges, A.V. and Frankignoulle, M., 2003. Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas. J. Geophys. Res., 108: 3140. Boehme, S.E., Sabine, C.L. and Reimers, C.E., 1998. CO2 fluxes from a coastal transect: a time-series approach. Marine Chemistry, 63: 49-67. Cai, W.J., 2003. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophys. Res. Lett., 30(2): 1032. Cai, W.J., Dai, M.H. and Wang, Y.C., 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophys. Res. Lett., 33(12): L12603. Cai, W.J., Chen, L., Chen, B., Gao, Zhongyong., Lee, S.H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.J., Zhang, Y., Xu, S., Murata, A., Grebmeier, J.M., Jones, E.P. and Zhang, H., 2010. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science, 329: 556. Cooley, S.R., Coles, V.J., Subramaniam, A. and Yager, P.L., 2007. Seasonal variations in the Amazon plume-related atmospheric carbon sink. Global Biogeochem. Cycles., 21: GB3014. Chen, C., Beardsley, R.C., Limeburner, R. and K., 1994. Comparison of winter and summer hydrographic observations in the Yellow and East China Sea and Aduacent Kuroshio During 1986. Cont. Shelf Res, 14: 909-923. Chen, C.T.A. and Borges, A.V., 2009. Reconciling opposing views on carbon cycling in the costal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research PartⅡ: Topical Studies in Oceanography, 56(8): 578-590. Chen, C.T.A. and Wang, S.L., 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 104(C9): 20675-20686. Chou, W.-C., Gong, G.-C., Sheu, D.D., Hung, C.-C. and Tseng, T.-F., 2009. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research-Oceans, 114: C07026. Chou, W.C., Gong, G.C., Tseng, C.M., Sheu, D.D., Hung, C.C., Chang, L.P. and Wang, L.W., 2011. The carbonate system in the East China Sea in winter. Marine Chemistry, 123(1): 44-55. Christensen, J.H. and Christensen, O.B., 2003. Severe summertime flooding in Europe. Nature, 421: 805-806. Dai, M., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Z., Xu, Y., Gan, J., Hu, J. and Du, C., 2013. Why are some marginal seas sources of atmospheric CO2?. Geophys. Res. Lett., 40(10): 2154-2158. Dai, A. and Trenberth, K.E., 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of hydrometeorology, 3(6): 660-687. Dickson, A.G. and Goyet, C., 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Frienderich, G.E., Walz, P.M., Burczynski, M.G. and Chavez, F.P., 2002. Inorganic carbon in the central California upwelling system during the 1997-1999 El Niño-La Niña event. Prog. Oceanogr., 54: 185-203. Fransson, A., Chierici, M. and Nojiri, Y., 2006. Increased net CO2 outgassing in the upwelling region of the southern Bering Sea in a period of variable marine climate between 1995 and 2001. J. Geophys. Res., 111: C08008. González-Dávila, M., Santana-Casiano, J.M. and Ucha, I.R., 2009. Seaseonal variability of fCO2 in the Angola-Benguela region. Prog. Oceanogr., 83: 124-133. Gong, G.C., Chen, Y.L.L. and Liu, K.K., 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: Implications in nutrient dynamics. Cont. Shelf Res., 16(12): 1561-1590. Gong, G.C., Wen, Y.H., Wang, B.W. and Liu, G.J., 2003. Seansonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research PartⅡ: Topical Studies in Oceanography, 50(6): 1219-1236. Gong, G.C., Liu, K.K., Chiang, K.P., Hsiung, T.M., Chang, J., Chen, C.C., Hung, C.C., Chou, W.C., Chung, C.C., Chen, H.Y., Shiah, F.K., Tsai, A.Y., Hsieh, C.H., Shiao, J.C., Tseng, C.M., Hsu, S.C., Lee, H.J., Lee, M.A., Lin, I.I. and Tsai, F., 2011. Yangtze River floods enhance coastal ocean phytoplankton biomass and potential fish production. Geophys. Res. Lett., 38: L13603. Hales, B., Takahashi, T. and Bandstra, L., 2005. Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochem. Cycles., 19: GB1009. Hsueh, Y. 2000. The Kuroshio in the East China Sea. Syst., 24: 131-139. Houghton, J., Ding, Y., Griggs, D., Noguer, M., Van Der Linden, P., Dai, X., Maskell, K. and Johnson, C., 2001. Climate change 2001: the scientific basis. Contribution of working group Ⅰ to the third assessment report of the international panel in climate change. Cambridge University Press Cambridge, England. Jiang, L.Q., Cai, W.J., Wanninkhof, R., Wang, Y. and Lüger, H., 2008. Air-sea CO2 fluxes on the U.S. South Atlantic Bight: Spatial and seasenal variability. J. Geophys. Res., 113: C07019. Johnson, G.P., Holmes, R.R. and Waite, L.A., 2004. The Great Flood of 1993 on the Upper Mississippi River-10 Years Later. USGS science for a changing world. Kötzinger, A., 2003. A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon River plume. Geophys. Res. Lett., 30(24): 2287. Koffi, U., Lefèvre, N., Kouadio, G. and Boutin, J., 2010. Surface CO2 parameters and air-sea CO2 flux distribution in the eastern equatorial Atlantic Ocean. Journal of Marine Systems, 82: 135-144. Knox, J.C., 1993. Large increases in flood magnitude in response to modest changes in climate. Nature, 361: 430-432. Kundzewicz, Z.W., Ulbrich, U., Brücher, T., Graczyk, D., Krüger, A., Leckebusch, G.C., Menzel, L., Pińskwar, I., Radziejewski, M. and Szwed, M., 2005. Summer Floods in Central Europe – Climate Change Track? Natural Hazards, 36: 165-189. Lefèvre, N., 2009. Low CO2 concentrations in the Gulf of Guinea during the upwelling season in 2006. Marine Chemistry, 113: 93-101. Lohrenz, S.E. and Cai, W.J., 2006. Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin. Geophys. Res. Lett., 33: L01601. Lohrenz, S.E., Cai, W.J., Chen, F., Chen, X. and Tuel, M., 2010. Seasonal variability in air-sea fluxes of CO2 in a river-influenced coastal margin. Journal of Geophysical Research, 115(C10034). Laruelle, G.G., Dürr, H.H., Slomp, C.P. and Borges, A.V., 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys. Res. Lett., 37(15): L15607. Land, P.E., Shutler, J.D., Cowling, R.D., Woolf, D.K., Walker, P., Findlay, H.S., Upstill-Goddard, R.C. and Donlon, C.J., 2012. Climate change impacts on sea-air fluxes of CO2 in three Arctic seas: a sensitivity study using earth observation. Biogeosciences Discussion, 9: 12377-12432. Lewis, E., Wallace, D. and Allison, L.J., 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of Energy. Liss, P.S., and Slater, P.G., 1974. Flux of Gases across Air-Sea Interface. Nature, 247(5438): 181-184. Liu, K.K., Peng, T.H., Shaw, P.T., and Shiah, F.K., 2003. Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan: an overview and a brief synthesis. Deep Sea Research PartⅡ: Topical Studies in Oceanography, 50(6): 1055-1064. Letouzey, J. and Kimura, M., 1986. The Okinawa Trough: Genesis of a back-arc basin developing along a continental margin. Geophys, 125: 209-230. Milly, P.C.D., Wetherald, R.T., Dunne, K.A. and Delworth, T.L., 2002. Increasing risk of great floods in a charging climate. Nature, 415: 514-517. Mirza, M.M.Q., 2003. Three Recent Extreme Floods in Bangladesh: A Hydro-Meteorological Analysis. Natural Hazards, 28: 35-64. Mills, E., 2005. Insurance in a Climate of Change. Science, 309: 1040. Milliman, J.D. and Farnsworth, K.L., 2011. River Discharge to the Coastal Ocean. Cambridge University, New York. Milliman, J.D., Shen, H.T., Yang, Z.S. and Meade, R.H., 1989. Sediments and sedimentary processes in Yellow and East China Sea. In: Sedimentary Facies in the Active Plate Margin edited by A. Taira and F. Masunda pp.233-249. Nitani, H., 1972. Beginning of the Kuroshio in Kuroshio Physical Aspects of the Japan Current edited by H., Stommel and K., Yoshida University of Washington Press, Seattle, pp.129-163. Pipko, I.I., Semiletov, I.P., Pugach, S.P., Wåhlström, I.and Anderson, L.G., 2011. Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea. Biogeosciences, 8: 1987-2007. Palmer, T.N. and Raisanen, J., 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 415: 512-514. Peng, T.H., Hung, J.J., Wanninkhof, R. and Millero, F.J., 1999. Carbon budget in the East China Sea in spring. Tellus Series B-Chemical and Physical Meteorogy, 51(2): 531-540. Sarmiento, J.L. and Gruber, N., 2002. Sinks for anthropogenic carbon. Physics Today, 55(8): 30-36. Shadwick, E.H., Thomas, H., Comeau, A., Craig, S.E., Hunt, C.W. and Salisbury, J.E., 2010. Air-sea CO2 fluxes on the Scotian Shelf: seasonal to multi-annual variability. Biogeosciences, 7: 3851-3867. Smith, T.H., Reynolds, R.W., Peterson, T.C. and Lawrimore, J., 2008. Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). J. Climate, 21: 2283-2293. Stoll, M.H.C., Thomas, H., De Baar, H.J.W., Zondervan, I., De Jong, E., Bathmann, U.V. and Fahrbach, E., 2002. Biological versus physical processes as drivers of large oscillations of the air-sea CO2 flux in the Antarctic marginal ice zone during summer. Deep Sea Research PartⅠ, 49: 1651-1667. Santana-Casiano, J.M., González-Dávila, M. and Ucha, I.R., 2009. Carbon dioxide fluxes in the Benguela upwelling system during winter and spring: A comparison between 2005 and 2006. Deep Sea Research PartⅡ, 56: 533-541. Shim, J., Kim, D., Kang, Y.C., Lee, J.H., Jang, S.-T. and Kim, C.-H., 2007. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Cont. Shelf Res., 27(20): 2623-2636. Siegenthaler, U. and Sarmiento, J.L., 1993. Atmospheric carbon-dioxide and the ocean. Nature, 365(6442): 119-125. Sibuet, J.C., Letouzey, J., Barbier, F., Charvel, J., Foucher, J.P., Hilde, T.W., C.Kimura, M., Chiao, L.Y., Marsset, B., Muller, C. and Stephan, J.F., 1987. Back arc extension in the Okinawa Trough. J. Geophys. Res., 92: 14041-14063. Semiletov, I.P., Pipko, I.I., Repina, I. and Shakhova, N.E., 2007. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic. Journal of Marine Systems, 66: 204-226. Ternon, J. F., Oudot, C., Dessier, A. and Diverres, D., 2000. A seasonal tropical sink for atmospheric CO2 in the Atlantic ocean: the role of the Amazon River discharge. Marine Chemistry, 68: 183-201. Tsunogai, S., Watanabe, S. and Sato, T., 1999. Is there a 'continental shelf pump' for the absorption of atmospheric CO2? Tellus Series B-Chemical and Physical Meteorology, 51(3): 701-712. Tseng, C.M., Liu, K.K., Gong, G.C., Shen, P.Y. and Cai, W.J., 2011. CO2 uptake in the East China Sea relying on Changjiang runoff is prone to chang. Geophys. Res. Lett., 38(24): L24609. Tseng, C.M., Shen, P.Y. and Liu, K.K., 2013. Synthesis of observed air-sea CO2 exchange fluxes in the river-dominated East China Sea and improved estimates of annual and seasonal net mean fluxes. Biogeosciences Discussion, 10: 13977–14007. Vandemark, D., Salisbury, J.E., Hunt, C.W., Shellito, S.M., Irish, J.D., McGillis, W.R., Sabine, C.L. and Maenner, S.M., 2011. Temporal and spatial dynamics of CO2 air-sea flux in the Gulf of Maine. J. Geophys. Res., 116: C01012. Wanninkhof, R., Olsen, A. and Triñanes, J., 2007. Air-sea CO2 fluxes in the Caribbean Sea from 2002-2004. J. Mar. Syst., 66: 272-284. Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S.C., McKinley, G.A., Lenton, A., Le Quere, C., Heinze, C., Schwinger, J., Graven, H. and Khatiwala, S., 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 10: 1983-2000. Watson, R. and Pauly, D., 2001. Systematic distortions in world fisheries catch trends. Nature, 414: 534-536. Wang, S.L., Chen, C.T.A., Hong, G.H. and Chung, C.S., 2000. Carbon dioxide and related parameters in the East China Sea. Cont. Shelf Res., 20(4-5): 525-544. Wanninkhof, R., 1992. Relationship between wind speed and gas exchange. J. Geophys. Res, 97(25): 7373-7382. Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203-215. Xu, K. and Milliman, J.D., 2009. Seansonal variations of sediment discharge from the Yangtze River before and sfter impoundment of the Three Gorges Dam. Geomorphology, 104(3): 276-283. Xu, L., Zang, L., Cai, W.J. and Jiang, L.Q., 2011. Air-sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis. Cont. Shelf Res., 31: 1904-1914. Yu, F., Z. Chen, X. Ren, and G. Yang, 2009. Analysis of historical floods on the Yangtze River, China: Characteristics and explanations. Geomorphology, 113: 210-216. Zhai, W., 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine Chemistry, 117(1-4): 2-10. Zhai, W., Dai, M. and Guo, X., 2007. Carbonate system and CO2 degassing flux in the inner estuary of Changjiang (Yangtze) River, China. Marine chemistry, 107(3): 342-356. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58622 | - |
dc.description.abstract | 現有的認知對於大河異常洪水影響沿岸海洋之二氧化碳吸收為何還不明確,尤其是以河川佔主導地位的邊緣海域。本研究主要是探討2010年7月長江大洪水對於東海表水二氧化碳分壓與其海氣交換通量之影響。藉著2010年7月6日至17日利用海研一號932航次,於東海進行現場偵測大氣與海水中之二氧化碳分壓(fCO2)和水文參數。結果顯示,表水二氧化碳分壓濃度範圍介於97.3 ~ 467.4 uatm,平均值為291.7 ± 63.3 uatm (n = 1599),大氣二氧化碳分壓濃度為380.2 ± 1.2 uatm (n = 686)。因為大洪水將大量的水和陸源物質以及營養鹽帶至東海,使得東海表水二氧化碳分壓存在一特殊的空間分佈。強烈生物作用主要發生在羽區內 (plume area) (即是長江沖淡水範圍內,Changjiang Diluted Water,CDW,鹽度小於31),造成低二氧化碳分壓濃度 (249.7 ± 26.0 uatm),約佔了整個航次總面積的50%;而具有高溫度、高鹽度及低營養與高二氧化碳分壓濃度之特性的水團 (即是台灣暖流水和黑潮水) 面積(13%)相較於來得少。整體而言,2010年7月大洪水事件促使東海成為強烈二氧化碳的匯 (~ -4.0 molC m-2 yr-1)。此外,本研究亦分析了過往14年 (1998-2011年) 的航次資料,得到了相同的結論,當CDW為主導水團時,因為高營養鹽和大量生物作用,加強了大氣二氧化碳的吸收。整體來說,長江大洪水明顯地增強東海二氧化碳吸收。進一步分析的結果表示,過去十幾年來,東海夏季7月大洪水之碳吸收量比起非洪水時期之碳吸收量多出約10倍。隨著自然環境的變遷使得大洪水事件發生的頻率可能會漸趨頻繁,為了解大洪水事件對於沿岸海洋二氧化碳吸收的貢獻度,所以我們需要長期地觀測並研究。 | zh_TW |
dc.description.abstract | The understanding of how anomalously large river floods affect the CO2 uptake in the coastal oceans, especially for the river-dominated marginal seas, is unclear. This study is to investigate the effect of the Changjiang flood in July 2010 on the surface distribution and air-sea exchange flux of CO2 in the East China Sea (ECS). We had performed the underway measurements of the air and sea surface fCO2 with hydrographic variables from July 7th to 17th 2010 during the flood event in the field survey of OR1-932. The results showed that fCO2w ranged from 97.3 to 467.4 uatm, with an average of 291.7 ± 63.3 (n=1599), which was under-saturated relative to atmospheric CO2 (380.2 ± 1.2 uatm, n=686). The fCO2 distribution exhibited a typical pattern spatially, varying from the normal summer. The serious flood brought huge amounts of runoff waters with terrigenous materials, including nutrients for phytoplankton, to the ECS. The flood-induced biological production largely took place in the plume area (i.e., Changjiang diluted water, CDW, Salinity <31‰) along with low fCO2 (249.7 ± 26.0 uatm), which occupied the 1/2 of total survey area. The high fCO2 waters associated with saline, warm oligotrophic waters (e.g., Taiwan Warm Current and Kuroshio waters) become less (13% of total area) relative to the normal summer levels (58%). Overall, the flood in July 2010 induced a net strong CO2 sink (~-4.0 molC m-2 yr-1). Moreover, similar consequences of the floods in the ECS were observed from a 14-year observation (1998-2011) that the CDW, as dominated water mass, spread over the ECS along with high nutrient and high biomass growth and then strengthen the atmospheric CO2 uptake. Overall, the Changjiang floods significantly enhance the CO2 uptake in the ECS. The results further show the CO2 uptake in the ECS in July 1998 and 2010 about 10 times the amount during non-flooding periods in the past decades. As the frequencies of floods increase world wide as a result of climate change, the contribution and magnitude of the flood-enhanced CO2 uptake in the coastal ocean shall be further examined via a long-term observation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:22:37Z (GMT). No. of bitstreams: 1 ntu-103-R99241409-1.pdf: 4440245 bytes, checksum: ba1b65b91e193e3da34739d4eb095f34 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書……………………………………………………… i
致謝…………………………………………………………………… ii 中文摘要……………………………………………………………… iii 英文摘要……………………………………………………………… iv 第一章 緒論……………………………………………………………1 1.1 研究背景……………………………………………………… 1 1.2 大河系統主導的邊緣海之碳化學簡介……………………… 3 1.3 降雨、水流量及洪水頻率增加之原因……………………… 5 1.4 東海文獻回顧………………………………………………… 7 1.5 研究動機與目的……………………………………………… 9 第二章 研究材料與方法…………………………………………… 11 2.1 研究區域………………………………………………………11 2.2 研究方法………………………………………………………13 2.3 儀器設備………………………………………………………13 2.4 採樣及分析……………………………………………………15 2.4.1 海水二氧化碳分壓(fCO2w)…………………………15 2.4.2 大氣二氧化碳分壓(fCO2a)…………………………15 2.5 其他參數之補助資料…………………………………………17 2.5.1 水文參數…………………………………………… 17 2.5.2 氣象資料…………………………………………… 17 2.6 內插計算方式…………………………………………………17 2.7 二氧化碳之海氣交換通量(CO2 Flux)計算…………………18 第三章 結果………………………………………………………… 19 3.1 水文與碳化學參數之空間分佈………………………………19 3.1.1 水文與化學參數之空間分佈及垂直密度分佈………19 3.1.2 大氣與表水二氧化碳(fCO2)之空間分佈……………21 3.1.3 表水二氧化碳分壓差值之空間分佈………………………… 22 第四章 討論………………………………………………………… 25 4.1 大洪水航次(OR1-932)之探討……………………………… 25 4.1.1 東海各水型特性與空間分佈…………………………25 4.1.2 二氧化碳航跡時序、水文及化學參數之關係………27 4.1.3 表水二氧化碳分壓(fCO2w)之控制機制探討……… 29 4.1.3.1 表水二氧化碳分壓(fCO2w)與溫度之關係…… 31 4.1.3.2 表水二氧化碳分壓(fCO2w)與鹽度之關係…… 33 4.1.3.3 表水二氧化碳分壓(fCO2w)與葉綠素a之關係…35 4.1.3.4 各水型控制機制之分析…………………………37 4.1.4 2010年7月東海二氧化碳海氣交換通量…………… 37 4.1.4.1 2010年7月東海二氧化碳海氣交換通量之空間分 佈…………………………………………………37 4.1.5 2010年7月東海各水型間之分析與比較…………… 40 4.2 東海夏季7月之大洪水年與非洪水年之分析與比較……… 42 4.2.1 水文及化學參數空間分佈圖…………………………42 4.2.2 水文及化學參數直方圖………………………………45 4.2.3 東海夏季7月航次水型比重及二氧化碳通量值…… 47 4.2.4 長江異常流量與二氧化碳海氣交換通量之關係……50 4.2.5 估算全球異常流量與二氧化碳海氣交換通量之關係53 第五章 結論………………………………………………………… 55 參考文獻……………………………………………………………… 56 圖 目 錄 圖 1.1 全球邊緣海之二氧化碳海氣交換通量研究圖…………… 2 圖 1.2 2013年年平均溫度變化趨勢圖…………………………… 6 圖 1.3 2013年夏季降雨量變化趨勢圖…………………………… 6 圖 1.4 東海過往二氧化碳研究之測站位置圖…………………… 8 圖 2.1 二氧化碳分壓自動分析系統示意圖………………………14 圖 2.2 大氣與表水二氧化碳分壓採樣設備架設示意圖…………16 圖 3.1 表水溫度、鹽度、葉綠素a、營養鹽、fCO2w、ΔfCO2 空間分佈圖…………………………………………………23 圖 3.2 密度的由南至北總共7條測線之垂直剖面圖…………… 24 圖 4.1 OR1_932航次之表水溫鹽分佈圖………………………… 26 圖 4.2 OR1_932航跡時序與水文及化學關係圖………………… 28 圖 4.3 混合層內fCO2w控制機制示意圖………………………… 30 圖 4.4 表水二氧化碳分壓(fCO2w)與溫度之關係……………… 32 圖 4.5 表水二氧化碳分壓(fCO2w) at 25℃與鹽度之關係…… 34 圖 4.6 表水二氧化碳分壓(fCO2w) at 25℃與葉綠素a之關係…36 圖 4.7 二氧化碳海氣交換通量之空間分佈圖……………………38 圖 4.8 各水型所佔比率、水文參數、ΔfCO2與CO2 Flux圖……41 圖 4.9 東海夏季7月之水文參數及表水二氧化碳分壓之空間 分佈圖………………………………………………………44 圖4.10 東海夏季7月水文及化學參數之直方圖………………… 46 圖4.11 東海夏季7月各水型佔研究區域之比重圖……………… 48 圖4.12 東海夏季7月之各水型之二氧化碳分壓差……………… 49 圖4.13 東海夏季7月之各水型之二氧化碳海氣交換通量……… 49 圖4.14 大通測水站全年長江水流量及二氧化碳海氣交換通量…51 圖4.15 不同長江水流量之二氧化碳通量變化……………………52 圖4.16 大河川影響全球二氧化碳通量之分佈圖…………………54 表 目 錄 表 1.1 前十大流量河川之水文資料………………………………4 表 1.2 大河系統之二氧化碳海氣交換通量………………………4 表 1.3 東海二氧化碳通量之過往文獻……………………………8 表 4.1 OR1_932研究區域各水型之水文及碳化學參數平均值…39 附錄……………………………………………………………………62 | |
dc.language.iso | zh-TW | |
dc.title | 長江大洪水事件增強東海表水二氧化碳分壓之吸收力 | zh_TW |
dc.title | Changjiang floods enhance the CO2 uptake of the East China Sea | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉康克,陳宗岳,陳世楠 | |
dc.subject.keyword | 東海,長江水流量,二氧化碳海氣交換通量,大洪水,長江沖淡水, | zh_TW |
dc.subject.keyword | East China Sea,Changjiang discharge,air-sea CO2 exchange flux,flood,Changjiang diluted water, | en |
dc.relation.page | 63 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-01-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。