Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林國儀(Kuo-I Lin)
dc.contributor.authorKuan-Hsiung Wangen
dc.contributor.author王冠雄zh_TW
dc.date.accessioned2021-06-16T08:21:54Z-
dc.date.available2017-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-01-28
dc.identifier.citationBy Rita Carsetti, Georges Kthler, and Marinus C. Lamers. (1995). Transitional B Cells Are the Target of Negative Selection in the B Cell Compartment. J. Exp. Med, 181.
Chiu, S. Y., Asai, N., Costantini, F., & Hsu, W. (2008). SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol, 6(12), e310. doi: 10.1371/journal.pbio.0060310
Chung, S. S., Ahn, B. Y., Kim, M., Choi, H. H., Park, H. S., Kang, S., Park, K. S. (2010). Control of adipogenesis by the SUMO-specific protease SENP2. Mol Cell Biol, 30(9), 2135-2146. doi: 10.1128/MCB.00852-09
David Allman, R. Coleman Lindsley, William DeMuth Kristina Rudd, Susan A. Shinton and Richard R. Hardy. (2001). Resolution of Three Nonproliferative Immature Splenic B Cell Subsets Reveals Multiple Selection Points During Peripheral B Cell Maturation. Journal of Immunol., 167, 6834-6840.
Ding, B. B., Bi, E., Chen, H., Yu, J. J., & Ye, B. H. (2013). IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol, 190(4), 1827-1836. doi: 10.4049/jimmunol.1201678
Florienne Loder, Bettina Mutschler, Robert J. Ray, Christopher J. Paige, Paschalis Sideras,i Raul Torres, Marinus C. Lamers, and Rita Carsetti. (1999). B Cell Development in the Spleen Takes Place in Discrete Steps and Is Determined by the Quality of B Cell Receptor derived signals. J. Exp. Med., 190, 75-89.
Gareau, J. R., & Lima, C. D. (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 11(12), 861-871. doi: 10.1038/nrm3011
Goodnow, C. C., Vinuesa, C. G., Randall, K. L., Mackay, F., & Brink, R. (2010). Control systems and decision making for antibody production. Nat Immunol, 11(8), 681-688. doi: 10.1038/ni.1900
Hayakawa, Richard R. Hardy and Kyoko. (2001). B CELL DEVELOPMENT PATHWAYS. Annual Rev. Immunol., 19, 595-621.
58
Hilary J. McKenna, Kim L. Stocking, Robert E. Miller, Kenneth Brasel, Thibaut De Smedt, Eugene Maraskovsky, Charles R. Maliszewski,David H. Lynch, Jeffrey Smith, Bali Pulendran, Eileen R. Roux, Mark Teepe, Stewart D. Lyman, and Jacques J. Peschon. (2000). Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood, 95(11), 3489-3497.
Isakson, Peter C. (1982). AntiImmunoblobulin-Treated B Cells Respond To a B Cell Differentation Factor For IgG1. J. Exp. Med, 164, 303-308.
Itahana, Y., Yeh, E. T., & Zhang, Y. (2006). Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol, 26(12), 4675-4689. doi: 10.1128/MCB.01830-05
Jiang, M., Chiu, S. Y., & Hsu, W. (2011). SUMO-specific protease 2 in Mdm2-mediated regulation of p53. Cell Death Differ, 18(6), 1005-1015. doi: 10.1038/cdd.2010.168
Kang, X., Qi, Y., Zuo, Y., Wang, Q., Zou, Y., Schwartz, R. J., Yeh, E. T. (2010). SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell, 38(2), 191-201. doi: 10.1016/j.molcel.2010.03.005
Klein, U., Casola, S., Cattoretti, G., Shen, Q., Lia, M., Mo, T., . Dalla-Favera, R. (2006). Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol, 7(7), 773-782. doi: 10.1038/ni1357
Lane, Peter J. L., Gray, David, and, Susan Oldfield, & MacLennan, Ian C. M. (1986). Differences in the recruitment of virgin B cells into antibody responses to thymus-dependent and thymusindependent type-2 antigens.
Lee, M. H., Mabb, A. M., Gill, G. B., Yeh, E. T., & Miyamoto, S. (2011). NF-kappaB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Mol Cell, 43(2), 180-191. doi: 10.1016/j.molcel.2011.06.017
Lin, A.L. Shaffer; Kuo-I, Kuo, Tracy C., Yu, Xin, Hurt, Elaine M., Rosenwald, Andreas, Giltnane, Jena M., Staudt, Louis M. (2002). Blimp-1 Orchestrates Plasma Cell
59
Differentiation by Extinguishing the Mature B Cell Gene Expression Program.
Lu, R., Medina, K. L., Lancki, D. W., & Singh, H. (2003). IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev, 17(14), 1703-1708. doi: 10.1101/gad.1104803
Miriam Shapiro-Shelef, Kuo-I Lin,1 Louise J. McHeyzer-Williams, Jerry Liao, Michael G. McHeyzer-Williams, and Kathryn Calame1. Immunity (2003). Blimp-1 Is Required for the Formation of Immunoglobulin Secreting Plasma Cells and Pre-Plasma Memory B Cells.
Mos Domen, Irving Weissman. (2000). Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol Med Today, 5, 201-208.
Muramatsu, M. (1999). Specific Expression of Activation-induced Cytidine Deaminase (AID), a Novel Member of the RNA-editing Deaminase Family in Germinal Center B Cells. Journal of Biological Chemistry, 274(26), 18470-18476. doi: 10.1074/jbc.274.26.18470
Omori, S. A., Cato, M. H., Anzelon-Mills, A., Puri, K. D., Shapiro-Shelef, M., Calame, K., & Rickert, R. C. (2006). Regulation of class-switch recombination and plasma cell differentiation by phosphatidylinositol 3-kinase signaling. Immunity, 25(4), 545-557. doi: 10.1016/j.immuni.2006.08.015
Ozaki, Katsutoshi, Spolski, Rosanne, Ettinger, Rachel, Kim, Hyoung-Pyo, Gang Wang, Qi, Chen-Feng, Leonard, Warren J. (2004). Regulation of B Cell Differentiation and Plasma Cell Generation by IL-21, a Novel Inducer of Blimp-1 and Bcl-6.
Patrick Revy, Taro Muto, Yves Levy, Fre´ de´ ric Geissmann, Alessandro Plebani, Ozden Sanal, 6 Nadia Catalan, 1 Monique Forveille,, Re´ mi Dufourcq-Lagelouse, Andrew Gennery, Ilhan Tezcan, Fugen Ersoy, Hulya Kayserili,, Alberto G. Ugazio, Nicole Brousse, . . . Fischer, and Anne Durandy. (2000). Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2). Cell, 102, 565-575.
Saito, M., Gao, J., Basso, K., Kitagawa, Y., Smith, P. M., Bhagat, G., Dalla-Favera, R. (2007). A signaling pathway mediating downregulation of BCL6 in germinal
60
center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell, 12(3), 280-292. doi: 10.1016/j.ccr.2007.08.011
Shapiro-Shelef, M., & Calame, K. (2005). Regulation of plasma-cell development. Nat Rev Immunol, 5(3), 230-242. doi: 10.1038/nri1572
Su, S. T., Ying, H. Y., Chiu, Y. K., Lin, F. R., Chen, M. Y., & Lin, K. I. (2009). Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol, 29(6), 1421-1431. doi: 10.1128/MCB.01158-08
Thiago L. Carvalho, Tomaz Mota-Santos, Ana Cumano, Jocelyne Demengeot, & Vieira, and Paulo. (2001). Arrested B Lymphopoiesis and Persistence of Activated B Cells in Adult Interleukin 7 deficient Mice. J. Exp. Med, 194, 1141–1150.
Tunyaplin, Chainarong, Shaffer, A. L., D., Cristina, Angelin-Duclos, Yu, Xin, Staudt, Louis M., & Calame, Kathryn L. Direct Repression of prdm1 by Bcl-6 Inhibits Plasmacytic Differentiation. J Immunol (2004).
William J. Romanow, Anton W. Langerak, Peter Goebel, Ingrid L. M. Wolvers-Tettero,, & Jacques J. M. van Dongen, Ann J. Feeney, and Cornelis Murre. (2000). E2A and EBF Act in Synergy with the V(D)J Recombinase to Generate a Diverse Immunoglobulin Repertoire in Nonlymphoid Cells. Molecular Cell, 5, 343-353.
Wimmer, P., Schreiner, S., & Dobner, T. (2012). Human pathogens and the host cell SUMOylation system. J Virol, 86(2), 642-654. doi: 10.1128/JVI.06227-11
Yeh, E. T. (2009). SUMOylation and De-SUMOylation: wrestling with life's processes. J Biol Chem, 284(13), 8223-8227. doi: 10.1074/jbc.R800050200
Ying, H. Y., Su, S. T., Hsu, P. H., Chang, C. C., Lin, I. Y., Tseng, Y. H., Lin, K. I. (2012). SUMOylation of Blimp-1 is critical for plasma cell differentiation. EMBO Rep, 13(7), 631-637. doi: 10.1038/embor.2012.60
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58606-
dc.description.abstractSUMOylation是一種可逆的後轉譯修飾,它進行類似ubiquitin修飾的方式與將SUMO (Small Ubiquitin-like modifier) 與特定蛋白上的lysine支鍊形成共價鍵,進而修飾目標蛋白質來影響參與在各種生物現象之蛋白質的功能、如轉錄、轉譯、癌症、發育、病毒複製等等。此論文主要探討的主題為促成SUMOylation的可逆性的蛋白酶SENPs (SUMO-specific Sentrin Protease),在漿細胞分化的過程中所扮演的角色,實驗室之前的研究發現,Blimp-1 (B lymphocyte- induced maturation protein-1) 這個決定B細胞能否分化成漿細胞極其重要的蛋白,它的SUMOylation對於B細胞能否成功的分化成漿細胞是重要的。而SENP2具有去掉被加以SUMO的能力,但因為SUMO-Specific Sentrin protease 2 (SENP2)在免疫系統上的功能尚未被研究,而且以傳統基因剔除的方式將Senp2 於老鼠剔除會導致小鼠胚胎發育時死亡,為此我們將Senp2f/f的小鼠,與CD19-Cre背景的小鼠交配得到只有在B細胞中刪除Senp2的小鼠作研究。結果發現在經由活體免疫之後,B細胞剔除Senp2的老鼠生產出顯著且高量的IgG抗體種類轉移和親合力成熟。此外、我們也在活體外培養脾臟B220+ 細胞佐以不同細胞激素刺激來模仿漿細胞分化的過程,也發現與活體內相同的結果。因此,我們可以確定Senp2在調控漿細胞分泌免疫球蛋白的過程中會扮演重要的角色,而進一步尋找因Senp2被剔除導致抗體生產的目標蛋白則是未來研究的方向。zh_TW
dc.description.abstractSUMOylation is one of the post-translational modifications (PTMs) that can be reversibly modified and involves in the regulation of diverse biological processes such as transcription, replication, chromosome segregation, carcinogenesis, and viral replication. Protein SUMOylation is modified by a family of small ubiquitin-related modifier (SUMO) proteins, and such post-translational modification is coined because it shares structure akin to ubiquitins as well as similar enzymatic cascades involving serial actions of E1 activating enzyme, E2 conjugating enzyme, and E3 protein ligase. The diverse biological process mediated by SUMOylation is reversible and reversibility of SUMOylation hinges on a family of proteases called SENPs. The function of SUMO-specific sentrin protease 2 (SENP2) in immune system is yet been elucidated. It’s been reported that conventional knockout of Senp2 in mice results in embryonic lethal. In this thesis, I focused on the study of the function of SENP2 in B cell differentiation. The terminal differentiation of B cells into plasma cells is recognized as the basis of humoral immunity that requires the expression of the master regulator—Blimp-1. Our previous study has shown that Blimp-1 can be specifically modified by SUMO1 through PIAS1 (SUMO E3 ligase) in plasma cell differentiation, and the SUMOylation of Blimp-1 is required for plasma cell differentiation. It is thus conceivable to propose that SUMOylation may affect plasma cell differentiation. Here,we crossed Senp2f/f mice with the mice carrying Cre recombinase under the regulation of CD19 promoter (CD19Cre+/-) to generate Senp2 conditional knockout (CKO) mice in which Senp2 is deleted specifically in B cells. We observed that CKO mice are equipped with stronger antibody secretion ability in both T-dependent immunization and T-independent immunization in vivo as well as the ex vivo culture systems that mimic T-dependent immunization stimulated with IL-21, α-CD40, and α-IgM, T-independent immunization stimulated with LPS, and class switch recombination stimulated with LPS and IL-4. These findings suggest that Senp2 plays a role in controlling the antibody class switch in B cells.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:21:54Z (GMT). No. of bitstreams: 1
ntu-103-R00449009-1.pdf: 2872274 bytes, checksum: 9798714040fd566b6669de31cc7444d7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Abbreviations v
Table of contents vii
List of figures xi
Chapter I Introduction 1
1.1 Preamble.2
1.2 B Cell development 2
1.3 Humoral Immune Response 4
1.4 SUMOylation6
1.5 DeSUMOylation 7
1.6 SENP2 knock-out mice 8
1.7 Specific aims10
Chapter II Materials and Methods 11
2.1 Mice & Cell Culture12
2.2 Immunization 13
2.3 ELISA.14
2.4 Intracellular Staining and Flow Cytometry Analysis14
2.5 Western Blotting15
2.6 RT-QPCR analysis for Senp2 15
2.7 Primers16
2.8 Fluorescence and Western Antibody 17
2.9 Statistics 18
Chapter III Results 19
3.1 Generation of recombinant mouse Senp2 Protein 20
3.2 Deletion Efficiency of Senp2 CD19cre CKO Mouse 21
3.3 CKO mice showed stronger humoral antibody responses after in vivo NP-KLH immunization.22
3.4 CKO and Ctrl mice showed comparable IgM antibody responses after in vivo NP-Ficoll immunization23
3.5 NP4/NP32 ratios show stronger affinity maturation in CKO mice after in vivo NP-KLH immunization.24
3.6 Ex vivo culture of splenic B cells from CKO and Ctrl mice to mimic T-dependent
immunization 24
3.7 Ex vivo culture of splenic B cells from CKO and Ctrl mice to mimic T-independent immunization n26
Chapter IV Discussion 28
4.1 Phenotypic discovery of Senp2 CD19cre CKO mice29
4.2 Senp2 plays a role in affinity maturation or class switch recombination.29
4.3 Mass Spectrometry approach to indentify substrate proteins responsible for the phenotype of CKO mice31
Figures 34
References 56
dc.language.isoen
dc.subject漿細胞zh_TW
dc.subject後轉譯修飾zh_TW
dc.subjectSENP2en
dc.subjectPlasa Cellen
dc.subjectSUMOylationen
dc.titleSENP2在漿細胞所扮演的角色zh_TW
dc.titleRole of SENP2 (Sumo-Specific Sentrin Protease 2) in Plasma Cell Differentiationen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李建國(Chien-Kuo Lee),繆希椿(Shi-Chuen Miaw)
dc.subject.keyword漿細胞,後轉譯修飾,zh_TW
dc.subject.keywordSENP2,Plasa Cell,SUMOylation,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2014-01-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved