Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58600
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張顏暉(Yuan-Huei Chang)
dc.contributor.authorZih-Li Linen
dc.contributor.author林子立zh_TW
dc.date.accessioned2021-06-16T08:21:38Z-
dc.date.available2014-03-08
dc.date.copyright2014-03-08
dc.date.issued2014
dc.date.submitted2014-01-27
dc.identifier.citation[1] Liu, Xinjun, et al. 'Complementary Resistive Switching in Niobium Oxide-Based Resistive Memory Devices. ' Electron Device Letters, IEEE Vol.34,2 (2013): 0741-3106.
[2] Zhou, P., et al. 'Role of TaON interface for CuxO resistive switching memory based on a combined model.' Applied Physics Letters 94.5 (2009): 053510-053510.
[3] Chen, A., et al. 'Switching characteristics of CuO metal-insulator-metal resistive memory.' Applied Physics Letters 91 (2007): 123517.
[4] J. S. Choi., et al. ' Different resistance switching behaviors of NiO thin films deposited on Ptand SrRuO3 electrodes .' Applied Physics Letters 95 (2009): 022109.
[5] Xu, N., et al. ' Bipolar resistive switching in individual Au–NiO–Au segmented nanowires' Applied Physics Letters 95 (2009): 022109:203505.
[6] Oka, Keisuke, et al. 'Spatial Nonuniformity in Resistive-Switching Memory Effects of NiO.' Journal of the American Chemical Society 133.32 (2011): 12482-12485.
[7] Kwon, Deok-Hwang, et al. 'Atomic structure of conducting nanofilaments in TiO2 resistive switching memory.' Nature nanotechnology 5.2 (2010): 148-153.
[8] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,'先進記憶體簡介',國研科技,1,31,(2004)
[9] Tehrani, Said, et al. 'Progress and outlook for MRAM technology.' Magnetics, IEEE Transactions on 35.5 (1999): 2814-2819.
[10] Kim, Kinam, and Gwan-Hyeob Koh. 'Future memory technology including emerging new memories.' Microelectronics, 2004. 24th International Conference on. Vol. 1. IEEE, 2004.
[11] Beck, A., et al. 'Reproducible switching effect in thin oxide films for memory applications.' Applied Physics Letters 77.1 (2000): 139-141.
[12] Szot, Krzysztof, et al. 'Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3.' Nature materials 5.4 (2006): 312-320.
[13] Baek, I. G., et al. 'Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses.' Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. IEEE, 2004.
[14] Sawa, Akihito. 'Resistive switching in transition metal oxides.' Materials Today11.6 (2008): 28-36.
[15] Wong, H-SP, et al. 'Metal–oxide RRAM.' Proceedings of the IEEE 100.6 (2012): 1951-1970.
[16] Sawa, Akihito. 'Resistive switching in transition metal oxides.' Materials Today11.6 (2008): 28-36.
[17] Gao, S., et al. 'Formation process of conducting filament in planar organic resistive memory.' Applied Physics Letters 102.14 (2013): 141606-141606.
[18] Tseng, Zong-Liang, et al. 'Electrical bistability in hybrid ZnO nanorod/polymethylmethacrylate heterostructures.' Applied Physics Letters97.21 (2010): 212103-212103.
[19] Gao, S., et al. 'Formation process of conducting filament in planar organic resistive memory.' Applied Physics Letters 102.14 (2013): 141606-141606.
[20] Hwang, Sun Kak, et al. 'Flexible Multilevel Resistive Memory with Controlled Charge Trap B-and N-Doped Carbon Nanotubes.' Nano letters 12.5 (2012): 2217-2221.
[21] Lee, M‐J., et al. 'A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories.' Advanced Materials 19.1 (2007): 73-76.
[22] Kwon, Deok-Hwang, et al. 'Atomic structure of conducting nanofilaments in TiO2 resistive switching memory.' Nature nanotechnology 5.2 (2010): 148-153.
[23] Yang, J. Joshua, et al. 'Memristive switching mechanism for metal/oxide/metal nanodevices.' Nature nanotechnology 3.7 (2008): 429-433.
[24] Lee, Myoung-Jae, et al. 'A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures.'Nature materials 10.8 (2011): 625-630.
[25] Kim, Sungho, et al. 'Physical electro-thermal model of resistive switching in bi-layered resistance-change memory.' Scientific reports 3 (2013).
[26] Lee, H. Y., et al. 'Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM.' Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
[27] Tian, He, et al. 'Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode.' Nano letters (2013).
[28] Wang, Lu-Hao, et al. 'The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories.' Applied Physics Letters 100.6 (2012): 063509-063509.
[29] Zheng, K., et al. 'Resistive switching in a GaOx-NiOx pn heterojunction.' Applied Physics Letters 101.14 (2012): 143110-143110
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58600-
dc.description.abstract本論文先研究單層二氧化鈦、氧化銅以及氧化鎳所做成的電阻式隨機存取記憶體之電阻轉換行為,再研究二氧化鈦與氧化銅之雙層異質接面的電阻轉換行為。我們利用蒸鍍法將鎳金屬沉積在矽基板上,再以熱氧化法形成氧化鎳,用濺鍍法將銅薄膜沉積在ITO基板上,再以熱氧化法形成氧化銅,二氧化鈦則是利用磁控濺射沉積在ITO基板後以熱處理形成銳鈦礦相。
  電壓電流量測的結果觀察到單層金屬氧化物元件皆具有雙極性電阻轉換行為,其高低電阻態之電阻比例大約為10倍到20倍,但發現單層結構的元件高低組態轉換電壓偏高,且重複讀寫次數較低。
  在氧化銅/氧化鎳、氧化鎳/二氧化鈦以及氧化銅/二氧化鈦的異質雙層結構中,我們發現在單層二氧化鈦上再沉積銅薄膜後以熱氧化形成氧化銅及二氧化鈦的雙層結構有雙極性電阻轉換的特性,其高低組態的轉換電壓只需0.2V及-0.8V,可重複讀寫次數也較單層結構元件高出許多,且其高阻態電阻值之標準差值較單層結構之二氧化鈦減少許多。我們研究結果發現異質雙層結構的元件較單層結構元件有較佳的特性及穩定性。
zh_TW
dc.description.abstractIn this thesis we report the study of the switching behavior of resistive random access memory (RRAM) made by using single and double layers metal oxides. In this study, NiO is made by oxidization of Ni thin film that was thermally evaporated on Si substrate, CuO is made by oxidization of thin Cu film that was sputtered on ITO glass, and TiO2 thin film is obtained by sputtering of bulk TiO2 on to ITO glass. The metal oxides were then characterized by using scanning electron microscope and X-ray diffraction.
IV measurements indicate that for the RRAM made by using single layer metal oxide, NiO, CuO and TiO2, the devices exhibit bipolar switching behavior, has a high /low resistance of about 10 to 20 and the set-rest voltages of these devices are around a few volts.
Double layer heterostructure metal oxide RRAM devices, including CuO/NiO, NiO/TiO2, CuO/TiO2 were also studied. We found that the device made by using CuO/TiO2 is most suitable for making RRAM devices. The set-reset voltage of the device is 0.2V and -0.8V, respectively, the lowest set-rest voltage ever reported for a RRAM devices. In addition, this device also has a better endurance and is more stable than a single layer device.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:21:38Z (GMT). No. of bitstreams: 1
ntu-103-R00222012-1.pdf: 3628755 bytes, checksum: 5454c042da0d7eb8ade6e3fd90787bbc (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 #
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的與動機 2
第二章 研究背景 4
2.1. 次世代非揮發性記憶體原理 4
2.1.1. 鐵電隨機記憶體(FeRAM) 4
2.1.2. 相變化隨機記憶體(PCRAM) 5
2.1.3. 磁阻隨機記憶體(MRAM) 6
2.1.4. 快閃記憶體(Flash Memory) 7
2.2. 電阻式非揮發性記憶體原理 8
2.2.1. 電阻轉換行為之分類 8
2.2.2. 雙極記憶體電阻轉換行為之機制與原理 10
2.3. 材料介紹 15
2.3.1. 氧化銅的電阻轉換特性 15
2.3.2. 氧化鎳的電阻轉換特性 15
2.3.3. 二氧化鈦的電阻轉換特性 16
2.4. 近代重要RRAM元件介紹 19
2.4.1. Ta2O5-x/TaO2-x 19
2.4.2. HfO2 22
2.4.3. Graphene/Graphene oxide 24
2.4.4. GaOx-NiOx heterojunction 26
第三章 實驗儀器原理 28
3.1. 化學氣相沉積(Chemical Vapor Deposition) 28
3.2. 掃描式電子顯微鏡(Scanning Electron Microscopy) 29
3.3. X射線繞射(X-ray diffraction) 30
3.4. 直流濺鍍系統(Sputtering) 31
3.5. 磁控濺鍍系統(RF-sputter) 32
3.6. 電壓電流量測系統(I-V measurement system) 32
第四章 實驗流程 33
4.1. 單層金屬氧化層電阻式記憶體製作 34
4.1.1. 氧化銅 34
4.1.2. 氧化鎳 35
4.1.3. 二氧化鈦 36
4.1.4. 電阻式記憶體元件之電極製作 36
4.2. 雙層金屬氧化層電阻式記憶體製作 37
4.2.1. 氧化銅/氧化鎳 37
4.2.2. 氧化鎳/二氧化鈦 37
4.2.3. 氧化銅/二氧化鈦 37
4.2.4. 電阻式記憶體元件之電極製作 38
第五章 結果與討論 40
5.1. 元件結構分析 40
5.1.1. 掃描式電子顯微鏡下之結構分析 40
5.1.2. XRD成份分析 41
5.2. 記憶體元件之電性分析 42
5.2.1. 單層憶阻層記憶體之電壓電流特性 43
5.2.1.1. 氧化銅 43
5.2.1.2. 氧化鎳 44
5.2.1.3. 二氧化鈦 45
5.2.2. 雙層憶阻層記憶體之電壓電流特性 46
5.2.2.1. 氧化銅/氧化鎳 46
5.2.2.2. 氧化鎳/二氧化鈦 47
5.2.2.3. 氧化銅/二氧化鈦 48
5.2.3. 氧化銅/二氧化鈦雙層結構與二氧化鈦單層結構之記憶體特性討論 50
第六章 結論 54
參考文獻 55
dc.language.isozh-TW
dc.subject電阻式記憶體zh_TW
dc.subject憶阻層zh_TW
dc.subject雙層zh_TW
dc.subject氧化銅zh_TW
dc.subject二氧化鈦zh_TW
dc.subject單層zh_TW
dc.subjectTiO2en
dc.subjectmemory resistative layeren
dc.subjectdouble layeren
dc.subjectsingle layeren
dc.subjectrramen
dc.subjectbipolaren
dc.subjectCuOen
dc.title單層與雙層金屬氧化物電阻式隨機存取記憶體之研究zh_TW
dc.titleA study on the property of RRAM with single and double layer metal oxidesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永芳(Yang-Fang Chen),梁啟德(Chi-Te Liang)
dc.subject.keyword電阻式記憶體,氧化銅,二氧化鈦,單層,雙層,憶阻層,zh_TW
dc.subject.keywordrram,bipolar,CuO,TiO2,single layer,double layer,memory resistative layer,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2014-01-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved