請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58599完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧佳遇 | |
| dc.contributor.author | Chung-Hui Chiao | en |
| dc.contributor.author | 焦中輝 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:21:35Z | - |
| dc.date.available | 2019-03-09 | |
| dc.date.copyright | 2014-03-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-28 | |
| dc.identifier.citation | References
Allis, R., T. Chidsey, W. Gwynn, C.Morgan, S. White, M. Adams, J. Moore (2001), Natural CO2 reservoirs on the Colorado Plateau and Southern Rocky Mountains: candidates for CO2 sequestration. In: Proceedings of the First National Conference of Carbon Sequestration, National Energy Technology Laboratory, Washington, DC, USA, May 15–17, 2001. Bachu, S., W. D. Gunter, E. H. Perkins (1994), Aquifer disposal of CO2: hydrodynamic and mineral trapping, Energy Convers. Manage, 35 (4), 269–279. Bachu, S. (2002), Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space, Energy Convers. Manage, 43, 87–102. Bachu, S., Adams, J.J. (2003), Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution, Energy Convers. Manage, 44, 3151–3175. Bachu, S., D. Bonijoly, J. Bradshaw, R. Burruss, N. P. Christensen, S. Holloway, and O. M. Mathiassen (2007), Estimation of CO2 Storage Capacity in Geological Media - Phase II [online]. Prepared by the Task Force on CO2 Storage Capacity Estimation for the Technical Group (TG) of the Carbon Sequestration Leadership Forum (CSLF). Bennion, B. S. Bachu (2006), The impact of interfacial tension and pore-size distribution/capillary pressure character on CO2 relative permeability at reservoir conditions in CO2-brine systems, Paper SPE 99325, 10pp, the SPE/DOE fifteenth symposium on improved oil recovery, Tulsa, OK, USA, 22-26. Benson, S. M., L. Tomutsa, D. Silin, T. Kneafsey, L. Miljkovic (2006), Core-scale and Pore-scale Studies of Carbon Dioxide Migration in Saline Formations, Proceedings of 8th International Conference on Greenhouse Gas Control Technologies, IEA Greenhouse Gas Program (GHGT8), Trondheim, Norway, June 19-22. Bradshaw, J., S. Bachu, D. Bonijoly, R. Burruss, N. P. Christensen, O. M. Mathiassen (2005), Phase I Final Report: Task Force for Review and Identification of Standards for CO2 Storage Capacity Measurement [online], Carbon Sequestration Leadership Forum (CSLF). Bradshaw, J., S. Bachu, , D. Bonijoly, R. Burruss, S. Holloway, N. P. Christensen, O. M. Mathiassen (2007), CO2 storage capacity estimation: issues and development of standards, Int. J. Greenhouse Gas Control 1 (1), 62. Brandshaw, J. (2012), Geological storage of CO2: 'Practicalities' - issues, risks and uncertainties associated with site selection, CCS Workshop -Ensuring safety toward public acceptance. available online at http://www.rite.or.jp/English/lab/sequestration /workshop/ CCS2011_SP1_JohnBrandshaw_slide_EN.pdf. Bennion, B. , S. Bachu (2005), Relative permeability characteristics for CO2 displacing water in a variety of potential sequestration zones in the Western Canada Sedimentary Basin. Paper SPE 95547, 15pp, presented at the 2005 SPE Technical Conference and Exhibition, Dallas, TX, 9-12 October. Birkholzer, J.T., Q. Zhou, J. Rutqvist, P. Jordan, K. Zhang, C. F. Tsang (2007), Research project on CO2 geological storage and groundwater resources: large-scale hydrogeological evaluation and impact on groundwater systems, Report LBNL-63544, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. Brennan, S.T., R. C. Burruss, M. D. Merrill, P. A. Freeman, and L. F. Ruppert (2010), A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage, U.S. Geological Survey Open-File Report 2010–1127, 31 pp., available online at http://pubs.usgs.gov/of/2010/1127. Buckley, S. E., M. C. Leverett (1942), Mechanism of fluid displacement in sands, Trans., AIME, 16, 107-116. CGSS (2010), An assessment of Queensland’s CO2 Geological Storage prospectivity-the Queensland’s CO2 Geological Storage atlas. , available online at http://www.cgss.com.au/Assessement%20of%20Qlds%20CO2%20geological%20storage%20prospectivity_web%20version.pdf. Chang, S. L., Stanley (1968), Regional Stratigraphic Study of the Lower Miocene Formations in Northern Taiwan, Petrol. Geol. Taiwan, 6, 45-70. Chang, S. L. and W. R. Chi (1983), Neogene nannoplankton biostratigraphy in Taiwan and the tectonic implications, Petrol. Geol. Taiwan, 19, 93-147. Chen, Y. C. (2011), Potential Geological Storage of Carbon Dioxide in the Offshore Area between Taichung and Changhwa Investigated from Seismic Analysis, Master Thesis of National Central University. Chi, W. R. and H. M. Huang (1981), Nannobiostratigraphy and paleoenvironments of the late Neogene sediments and their tectonic implications in the Miaoli area, Taiwan, Petrol. Geol. Taiwan, 18, 111-129. Chou, J. T. (1973), Sedimentology and palaeogeography of the Upper Cenozoic System of western Taiwan, Pro. Geol. Soc. China, 16,111-143. Chou, J. T. (1977), Sedimentology and palaeogeography of the Pleistocene Toukoshan Formation in western Taiwan, Petrol. Geol. Taiwan, 14, 25-36. Chou, J. T. (1980), Stratigraphy and sedimentology of the Miocene in western Taiwan, Petrol. Geol. Taiwan, 17, 33-52. Chou, S. C., L. S. Teng, H. S. Chung, and T. W. Shiao (1994), Geohistory analysis of west Taiwan forland basin: a prelimnary study, Petrol. Geol. Taiwan, 29, 289-323. Chou, Y. W., and H. S. Yu (2002), Structural expressions of flexural extension in the arc-continent collisional foredeep of western Taiwan, Geology and Geophysics of an Arc-Continent Collision, Taiwan, Geological Society of America Special Papers, in Byrne, T. B., and C. S. Liu, (Eds.), 1-12. Chuang, K. C, T. F. Chou (1998), Reservoir Study of the Shihti and the Mushan Formations in the Hsinchu-Miaoli Area. Petrol. Geol. Taiwan, 32, 187-210. CO2CRC (2008), Storage Capacity Estimation, Site Selection and Characterisation for CO2 Storage Projects, CO2CRCReport No. RPT08-1001, 52pp, Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. DOE/NETL (2012) The 2012 United States Carbon Utilization and Storage Atlas – Fourth Edition (Atlas IV). Domenico, P.A., F. W. Schwartz, (1998), Physical and Chemical Hydrogeology, 2nd ed. John Wiley & Sons, Inc, New York. Doughty, C., K. Pruess (2004): Modeling supercritical carbon dioxide injection in heterogeneous porous media, Vadose Zone J. 3, 837–847. Folger, P. (2009), Carbon Capture and Sequestration (CCS) (RL33801), Congressional Research Service, Retrieved February 1, 2010, from http://handle.dtic.mil/100.2/ ADA502774 Hart, D.J., K. R. Bradbury, D. T. Feinstein, (2006), The vertical hydraulic conductivity of an aquitard at two spatial scales, Ground Water,44 (2), 201–211. Harwood, J. (2005), Building Capacity for CO2 Capture and Storage Project in the APEC Region, A Training Manual for Policy Makers and Practitioners, APEC Reference #205-RE-01.3. Holloway, S., J. P. Heederik, L. G. H. van der Meer, I. Czemichowski-Lauriol, R. Harrison, E. Lindeberg, I. R. Summerfield, C. Rochelle, T. Schwarzkopf, O. Kaarstad, B.Berger, (1996), The underground disposal of carbon dioxide, summary report, JOULE II Project No. CT92-0031, British Geological Survey, Keyworth, UK. Horne, R. N., R. Stacey, K. Li. (2008), Physical modeling of CO2 sequestration, California Energy Commission, PIER Energy-Related Environmental Research Program, CEC500-2007-113. Houghton, J.T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, (Eds.) (2001), The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 0-521-80767-0. Hovorka, S.D., C. Doughty, P. R. Knox, C. T.Green, K. Ruess, S. M. Benson (2001), Evaluation of brine-bearing sands of the Frio formation, upper Texas gulf coast for geological sequestration of CO2, In: First National Conference on Carbon Sequestration, National Energy Technology Laboratory, Pittsburgh, PA, USA, May 14–17, 2001. Huang, T. C. and J. S. Ting (1981), Calcareous nannofossil biostratigraphy of the Neogene in the shallow-sea deposits of Taiwan, Ti-Chih, 3, 105-119. Huang, T. C. (1982), Tertiary calcareous nannofossil stratigraphy and sedimentation cycles in Taiwan, Proceeding of the second ASCOPE Conference and Exhibition, 837-886, Manila Philippines. Huang, L. S. (1990), Preliminary Study on the Subsurface Temperature and Geothermal Gradients of the Late Cenozoic Basin in Western Taiwan, Bulletin of the Central Geological Survey, MOEA, No. 6, 117-144. IEA/EERC (2009), Summary and overview of CSLF, DOE and other methodologies, Calculation of storage coefficients in the context of the resource pyramid. Johnson, E. F., D. P. Bossler, V. O. Naumann, (1959), Calculation of relative permeability from displacement experiments, Trans. AIME , 216, 370-372. Khasreen, M. M., P. F. G. Banfill, and G. F. Menzies (2009), Life cycle assessment and the Environmental Impact of Buildings: A Review, Sustainability, 1, 674–701. Kaldi J. K., C. M. Gibson-Poole (2008), Storage Capacity Estimation, Site Selection and Characterisation for CO2 Storage Projects, CO2CRC Report No: RPT08-1001, Cooperative Research Centre for Greenhouse Gas Technology, Canberra. Kameya H., K. Hosoda, J. Takeshima1, H. Azuma, S. Hiramatsu (2011), Relative Permeability Experiments by Displacement Method for Estimating CO2 Movement, The 17th Formation Evaluation Symposium of Japan, September,29-30. Kellie, A. C. (2011), Converting Legacy Maps into 3D Models, The ATMAE 2010 Conference Proceedings papers,110-117, from http://atmae.org/awards/2011 Best Paper.pdf. Koide, H., Tazaki, Y., Y. Noguchi, S. Nakayama, M. Iijima, K. Ito, Y. Shindo (1992), Subterranean containment and longterm storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Convers. Manage, 33(5–8), 619–626. Koide, K. (2011), A Review of Assessments of Potential CO2 Storage Capacity in Japan [power-point material], Japan-Indonesia CCS Workshop Jakarta, Indonesia, Research Institute for Innovative Technology for the Earth (RITE). Krause, M., J. C. Perrin, C. W. Kuo, S. M. Benson (2009), Characterization of CO2 storage roperties using core analysis techniques and thin section data, Energy Procedia, 1, Issue 1, February 2009, 2969-2974, doi:10.1016/j.egypro.2009.02.073. Krause, M., J. C. Perrin, S. M. Benson (2011), Recent Progress in Predicting Permeability Distributions for History Matching Core Flooding Experiments, Energy Procedia, 4, 4354-4361, doi:10.1016/j.egypro.2011.02.387. Kuo, C. W., J. C. Perrin, S. M. Benson (2011), Simulation studies of effect of flow rate and small scale heterogeneity on multiphase flow of CO2 and brine, Energy Procedia, 4, 4516-4523, doi:10.1016/j.egypro.2011.02.408. Lee, P. J. (1963), Lithofacies of the Toukoshan-Cholan Formation of western Taiwan, Pro. Geol. Soc. China, 6, 41-50. Lee, P. J. (1977), Rate of the early Pleistocene uplift in Taiwan, Mem. Geol. Soc. China, 2, 71-76. Lei, S.C., C. H. Yang, C. W. Yu, C. H. Chiao, L. T. Hwang, C. R. Lan (2011), Comparison of method of result analysis between steady-state method and displacement method in the two-phase flow testing, Conference on Resources Engineering, B, 16–21,Tainan, Taiwan, July, 21-22. Lin, A. T. (2001), Cenozoic stratigraphy and tectonic development of the west Taiwan basins. Ph.D. Thesis, 246, University of Oxford. Lin, A.T., A. B. Watts (2002), Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin, Journal of Geophysical Research, 107(B9), 2185, doi: 10.1029/2001JB000669. Lin, C. W., S. T. Lu, and W. S. Chen (2012), Active Fault Map of Taiwan: An Explanatory Text (2012 Edition), Central Geological Survey, Taiwan. Lin, T., A. B. Watts, S. P. Hesselbo (2003), Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453–478. Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer, (Eds.) (2005), IPCC Special Report on Carbon Dioxide Capture and Storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, 442 pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN- 13 978-0-521-68551-1. Meunier, F. (2007), The greenhouse effect: A new source of energy, Applied Thermal Engineering, 27(2-3), 658-664. Mualem, Y. (1976) A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media, Water Resour. Res., 12(3), 513 - 522. Muggeridge, A., Y. Abacioglu, W. England, C. Smalley (2004), Dissipation of anomalous pressures in the subsurface, J. Geophys. Res. 109, B11104, doi:10.1029/2003JB002922. Neuzil, C.E. (1994), How permeable are clays and shales?, Water Resour. Res., 30 (2), 145–150. Neuzil, C.E. (1995), Abnormal pressures as hydrodynamic phenomena. Am. J. Sci, 295, 742–786. Nicot, J. P. (2008), Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin, International Journal of Greenhouse Gas Control,, 2( 4), 582–593. Pachauri, R. K., and A. Reisinger, (Eds.) (2007), Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, ISBN 92-9169-122-4. Pearce, J. M., S. Holloway, H. Wacker, M. K. Nelis, C. Rochelle, K. Bateman (1996), Natural occurrence as analogues for the geological disposal of carbon dioxide, Energy Convers. Manage, 37 (6–8), 1123–1128 Perrin, J. C., M. Krause, C. W. Kuo, L. Miljkovic, E. Charoba, S. M. Benson (2009), Core-scale experimental study of relative permeability properties of CO2 and brine in reservoir rocks. Energy Procedia, 4, Issue 1, 3515-3522,doi:10.1016/j.egypro.200 9.02. Perrin, J. C., R. W. Falta, S. Krevor, L. Zuo, K. Ellison, S. M. Benson (2011), Laboratory experiments on core-scale behavior of CO2 exolved from CO2 -saturated brine, Energy Procedia, 4, 3210-3215, doi:10.1016/j.egypro.2011.02.237. Polak, S., E. Lundin, R. Boe, E. G. B. Lindeberg, O. Olesen, P. Zweigel, (2004), Storage potential for CO2 in the Beitstadfjord Basin, Mid-Norway, Report SINTEF No.54.5272.00/01/04 and NGU No. 2004.036, 51 pp, Geological Survey of Norway, Trondheim, Norway. Pruess, K. (2005), ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, LBNL-57952, Earth Sciences Division, Lawrence Berkeley National Laboratory. Puckette, J. Z. Al-Shaieb (2003), Naturally Underpressured Reservoirs: Applying the Compartment Concept to the Safe Disposal of Liquid Waste, Search and Discovery Article #40071, Online adaptation of presentation at AAPG Southwest Section Meeting, Fort Worth, TX, March, 2003. Qadeer, S., W. E. Brigham, L. M. Castanier (2002),Techniques to handle limitations in dynamic relative permeability measurements, Topical Report, National Petroleum Technology Office. Rutqvist, J., C. F. Tsang (2002), A study of caprock hydromechanical changes associated with CO2-injection into a brine formation, Environ. Geol., 42, 296–305. Rutqvist, J., J. T. Birkholzer, F. Cappa, C. F. Tsang (2007), Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis, Energy Convers. Manage, 48, 1798–1807. Saaty, T., J. Alexander (1989), Conflict Resolution: The Analytic Hierarchy Process, New York , New York: Praeger, ISBN 0-275-93229-F. Sally M. B., L. Boxiao, K. Michael, K. Sam, C. W. Kuo, and P. Ronny (2011), Investigations in Geologic Carbon Sequestration: Multiphase Flow of CO2 and water in reservoir rocks, Annual Report 2011, Department of Energy Resources Engineering, School of Earth Sciences, Stanford University. Scott F. (2006), Carbon Sequestration Atlas of the United States and Canada: Appendix A - Methodology for Development of Carbon Sequestration Capacity Estimates. National Energy Technology Laboratory, Department of Energy. Shafeen, A., E. Croiset, P. L. Douglas, I. Chatzis (2004), CO2 sequestration in Ontario, Canada, Part I. Storage evaluation of potential reservoirs, Energy Convers. Manage, 45, 2645–2659. Shaw, C. L. (1996), Stratigraphic correlation and isopach maps of the western Taiwan basins, Terrestr. Atmosph. And Oceanic Sci., 7, 333-360. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, (Eds.) (2007), The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 978-0-521-88009-1. Stevens, S.H., J. M. Pearce, A. A. J. Rigg (2001), Natural analog for geologic storage of CO2: an integrated global research program, Proceedings of the First National Conference of Carbon Sequestration, National Energy Technology Laboratory, Washington, DC, USA, May 15–17, 2001. Suenaga, H., K. Nakagawa, (2011), Analysis of two-phase flow properties of sandstones to evaluate their suitability for geologic storage of CO2, Energy Procedia, 4, 4323-4330, doi:10.1016/j.egypro.2011.02.38. Sun, S. C. (1981), The Tertiary basin of offshore Taiwan, Proc. 2nd. ASCOPE Conf. Exhib., Manila, Philippines, 126-135. Taiwan Power Company (2009), Building-up Geo-Database System and Site Screening for Carbon Dioxide Geo-Sequestration, Project report conducted by Sinotech Engineering Consultants, PDD-EGS-970303. Teng, L. S. (1987), Stratigraphic reords of the late Cenozoic Penglai Orogeny of Taiwan, Act. Geol. Taiwanica, 25, 205-224. Teng, L. S. (1990), Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57-76. Teng, L. S., A. T. Lin, (2004), Cenozoic tectonics of the China continental margin: insights from Taiwan, Aspects of the Tectonic Evolution of China, 313-332. Traci D. R. (2013), United States Energy Association (USEA): Briefing on the U.S. 2012 Carbon Storage and Utilization Atlas and Partnerships, Carbon Storage Technology Manager, February 21, 2013. Toth, J., T. Bodi, P. Szucs, F. Civan (2001), Direct determination of relative permeability from nonsteady-ntate constant pressure and rate displacements, Proceedings of Production and Operations Symposium of Society of Petroleum Engineers, SPE 67318. USDOE (2007), Methodology for development of carbon sequestration capacity estimates. Appendix A in Carbon Sequestration Atlas of the United States and Canada. National Energy Technology Laboratory, Pittsburgh, PA, USA. Van der Meer, L. G. H. (1992), Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands, Energy Convers. Manage, 33 (5–8), 611–618. Van der Meer, L.G.H. (1995), The CO2 storage efficiency of aquifers, Energy Convers. Manage, 36 (6–9), 513–518. Van Genuchten, M. Th. (1980), A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of American Journal, 44(1), 892-898. Welge, H. J. (1952), A simplified method for computing oil recovery by gas or water drive. Trans, AIME, 195, 91-98. Yu, H.S., Y.W. Chou (2001), Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin, Tectonophysics, 333, 277-291. Yu, C.W., C. T. Cheng, K. S. Shao, C. H. Chiao, and L. T. Hwang (2009): Pilot plant of carbon dioxide geological storage - Japan experiences, Monthly Journal of Taipower’s Engineering, May ,729, 91-102. Yu, C. W., S. Chen, K. S. Shao, C. H. Chiao, L. T. Hwang, and J. L. Chen (2011), Development of CCS technology for coal-fired power plant in Taiwan, Energy Procedia, 4, 4806-4813, doi:10.1016/j.egypro.2011.02.446. Zhang Keni, Y.S. Wu, K. Pruess (2008), User’s Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code, Lawrence Berkeley National Laboratory Repor,t LBNL-315E, Berkeley, CA. Zhou, Q., J. T. Birkholzer, C. F. Tsang, J. Rutqvist (2008), A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenhouse Gas Control 2(4), 626–639. Zhou, Q. and J. T. Birkholzer, (2011): On Scale and Magnitude of Pressure Build-up Induced by Large-scale Geologic Storage of CO2, Greenhouse Gas Science and Technology, 1:11-20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58599 | - |
| dc.description.abstract | 對二氧化碳鹽水層地質封存發展計畫而言,一個具有足夠儲存容量之安全地質空間是至關重要的。有鑑於此,本論文認為有必要進行更深入的研究課題,包括:1.一個盆地尺度實體的三維地質模型建置方法,2.在地下深鹽水層內有效且實用的二氧化碳儲存量評估方法,3.在鹽水層內二氧化碳注入安全數值模型之模擬。此亦成為本論文研究之三個主要目標。
本文以台灣西部台西盆地為例,探究在盆地尺度下,二氧化碳地質儲存於盆地內鹽水層之安全所需規範。針對目標地質封存地層組設定4個安全門檻條件,包括:1.儲集層之安全頂部/底部深度介於900 m/3,000 m間,2.蓋層所需之安全厚度需大於40 m,3.排除距離陸上活動斷層小於5公里範圍,4.排除可能切過蓋層之下伏斷層。有關在台西盆地內可利用之區域範圍與儲存容量之總體積,針對兩個選定可確保安全與有效碳封存的地層組合(如錦水層/桂竹林層組合、打鹿層/北寮層組合),進行地質資料之全面蒐集。 利用體積估算法,分別對兩個選定的封存地層組,進行地下儲集層之有效的二氧化碳儲存量計算。更進一步,使用GIS繪圖技術配置蓋層之安全區域範圍,並劃定儲集層之安全厚度,進行深鹽水層之有效的體積計算。本研究通過可利用之區域設定範圍,蒐集區域周圍與地下所有相關目標層之等厚度(深度等高線)圖,建置完成可利用區域之三維地質模型。 在三維地質模型中,對每一選定封存地層組合給予體積估算法經驗公式需要之所有參數值,就可計算出概略之有效儲存量。在本研究中推估可利用之區域範圍有效的二氧化碳儲存量,錦水層/桂竹林層組大約是8.7×109噸(87億噸);打鹿層/北寮層組大約是3.8×109噸(38億噸)。 利用在台中大坑地區從候選封存層由鑽孔岩心取樣,取得多孔隙砂岩試體,透過二相流試驗,求得相對滲透率與飽和度(K-S)曲線。K-S曲線為控制深部鹽水層地質封存可行性之關鍵輸入參數。在岩心滲流試驗過程中,採用沖排法以定流量注入超臨界二氧化碳,成功建立試驗流程及相對應之試驗分析方法。由成果顯示,直接從二相流排水循環測試結果獲得之K-S曲線,可提供數值模擬研究必要的輸入參數。為提高其可靠性與實際情況之適用性,更進一步利用電腦程式(如TOUGH2)進行歷史匹配過程以校正輸入參數。 本研究認為在一個定義完整之三維地質模型內,進行儲集層相關的二氧化碳注入,可作有效與實用之儲存量確認。透過數值模擬情境分析研究,安全儲存空間最佳化利用之關鍵問題得以評估,包括:1.可利用區域內注入井最佳數目之研究,2.在多口井配置情況下可注入總量之研究,3.在注入儲集層內壓力增量之研究。 對於台西盆地二氧化碳地質封存安全情境之數值模擬,係採用PetraSim/TOUGH2套裝軟體進行。該數值模型不僅可提供關於模擬二氧化碳團塊移棲路徑研判之重要資訊,並可對工程階段布井設計可行性,進行工程情境分析研究。模擬中大部分之關鍵輸入參數,係參考使用一些實際試驗與經驗數據,包括以往採樣岩心之研究數據,與在鄰近台西盆地地區台灣中油公司石油和天然氣勘探之井測結果。 | zh_TW |
| dc.description.abstract | A safe geological space with enough storage capacity is vital to the carbon geo-sequestration development program. Intensive studies for 1.building-up a realistic basin-scale 3-D geological model, 2.assessing the effective and practical carbon dioxide storage capacity in the underground saline aquifer, 3.the numerical modeling for simulating CO2 injecting safety within the aquifer are deemed necessary and become the three main objectives of this thesis study.
Using Taihsi Basin in the western Taiwan as a example, the safety criterion for CO2 geological storage in saline aquifers is set for target geo-sequestration groups with four threshold condition including: 1.Safe top/bottom (900 m/3,000 m) depth of storage reservoirs, 2.Safe thickness (40 m) of cap rock, 3.Excluding area with unsafe distance (<5 km) from on-shore active faults, 4.Excluding underlying pre-existing faults cutting through cap rock. Within Taihsi Basin, the areal extent of the Area of Interest (AOI) and total volume of storage capacity had been further revised towards two selected sequestration groups (e.g. Chinshui Fm./Kueichulin Fm. Group and Talu Fm./Peiliao Fm. Group) in which the safe and effective carbon sequestration can be ensured. Effective carbon dioxide storage capacity in the underground aquifers is estimated by volumetric estimating method respectively for two selected Sequestration Groups. Moreover, Effective volume of the deep saline aquifers has been estimated using the GIS graphic skill to allocate the safe areal extent of the cap rock and delineate the safe thickness of storage (reservoir) rock stratum. Generation of 3-D geological Model has been made possible by collecting the isopatch (depth contour) maps for all relevant target Formations surrounding and underlying the study area. The CO2 storage capacity for each selected sequestration Group in the 3-D model can be calculated by giving all the parametric values required in the empirical formula involved in a volumetric estimating method. In this study, this effective storage capacity calculated for Chinshui Fm./Kueichulin Fm. Group is around 8.7×109 tons (8.7 Giga-tons), while the effective storage capacity for Talu Fm./Peiliao Fm. Group is around 3.8×109 tons (3.8 Giga-tons). Relevant permeability vs. saturation (K-S) curves for porous sandstone cores sampled from a candidate reservoir rocks had been obtained in the Takeng area of Taichung. The K-S curves are regarded as critical input parameters controlling the feasibility of geo-sequestration in a deep saline aquifer. A two-phase flow or core-flooding test process using the displacement method with constant flow injection has been successfully established with corresponding tests successfully carried out. It has been also shown that K-S curves obtained directly from the test results in the drainage cycle can provide essential inputs for numerical simulation study. To enhance their reliability and real-world applicability, the input parameters should be calibrated by history match processes using computer code, e.g. TOUGH2. It has been noted that effective and practical storage capacity can be recognized in a well defined 3-D geological model contained aquifers (reservoirs) with relevant CO2 injectivity. Key issues regarding the optimally utilization of safe reservoir space are investigated, including 1.Study of the optimal number of injection wells, 2.Study of total injectable amount under a multi-well configuration, and 3.Study of pressure build up within the injected aquifer. Numerical modeling regarding safety scenarios for carbon geo-sequestration within the Taihsi Basin had been conducted by PetraSim simulator. The modeling can provide not only crucial information regarding the simulated plume migration path, but also the scenarios analysis to design sophisticated plan for engineering feasibility study. Most of the key input parameters used in the simulation is borrowed from some empirical data including pre-existing rock core investigation data and well logging results from local oil and gas exploration by CPC Corporation, Taiwan adjacent to the Taihsi Basin. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:21:35Z (GMT). No. of bitstreams: 1 ntu-103-D97224006-1.pdf: 10598626 bytes, checksum: e44a05d11d9e6ef387591cf168a46162 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 誌謝 ii 中文摘要 iv Abstract vi Contents viii List of figures xi List of tables xv Chapter 1: Introduction 1 1.1 Global Warming and Climate Change 1 1.1.1 CO2 Concentration 1 1.1.2 Impact Scenarios 4 1.2 International Concerns 6 1.2.1 IPCC Special Report 6 1.2.2 Kyoto Protocol 6 1.2.3 Role of CCS 7 1.3 Carbon Reduction Initiatives of Taiwan Government 9 1.3.1 Taiwan Carbon Reduction Policy 9 1.3.2 Carbon Emission from Coal-Fired Power Plant in Taiwan 10 1.3.3 Roadmap of CCS Development 11 1.4 Scope of Works in This Study 14 1.5 Summary 16 Chapter 2: Geological Model of Taihsi Basin 18 2.1 Introduction 18 2.2 Geological Setting 18 2.2.1 Geological Background 18 2.2.2 Tectonic History 19 2.2.3 Major Litho-Stratigraphic Units 24 2.3 Target Formations for Deep Saline Aquifer 28 2.3.1 C/K Sequestration Group 28 2.3.2 T/P Sequestration Group 30 2.4 Construction of the 3-D Geological Model 30 2.4.1 Area of Interest 30 2.4.2 Litho-Stratigaphic Units Identified 31 2.4.3 Constructing Methodology 33 2.4.4 Data Merging 41 2.5 Data Integration and Model Accuracy 41 2.6 Summary 44 Chapter 3: Determining the Effective 3-D Volume for Safe Carbon Sequestration 46 3.1 Introduction 46 3.2 Defining the Safe Sequestration Boundary in a Deep Saline Aquifer 47 3.2.1 Safe Top / Bottom Depth of Sequestration Reservoir 47 3.2.2 Safe Thickness of Cap Rock 47 3.2.3 Excluding Influence of On-Shore Active Faults 48 3.3 The Revised AOI. 48 3.4 Excluding Faults Cutting Through the Cap Rock Underlying Revised AOI.. 50 3.5 The Effective AOI. 59 3.5.1 Effective 3-D Volume in C/K Group 60 3.5.2 Effective 3-D Volume in T/P Group 60 3.6 Discussions 63 3.7 Summary 64 Chapter 4: Assessment for the Carbon Storage Capacity within Area of Interest 65 4.1 Introduction 65 4.2 Methodology for CO2 Storage Capacity Assessment 67 4.2.1 Volumetric Approach 67 4.2.2 Key Parameters for Calculation 68 4.3 Assessment of the Effective CO2 Storage Capacity within the AOI. 68 4.3.1 Effective CO2 Storage Capacity in C/K Sequestration Group 75 4.3.2 Effective CO2 Storage Capacity in T/P Sequestration Group 81 4.3.3 Total Effective Storage Capacity in the AOI. 87 4.4 Assessment of the Uncertainties 87 4.5 Summary 90 Chapter 5: Relative Permeability on Rock Cores in Taihsi Basin 91 5.1 Introduction 91 5.1.1 Porosity and Permeability of Reservoir Rock 91 5.1.2 Two-Phase Flow and Relative Permeability 91 5.2 Core Sampling 92 5.3 Core Testing 95 5.3.1 Test Apparatus 95 5.3.2 Test Data 97 5.3.3 Establish K-S Curve 100 5.3.4 Interpretation of Relative Permeability Parameters 102 5.4 History Matching 107 5.4.1 Capillary Pressure Effect 108 5.4.2 Relative Permeability 111 5.5 Field Injection Prediction 114 5.6 Summary 119 Chapter 6: Assessment on Practical Storage Capacity and Modeling of Safety Scenarios 120 6.1 Introduction 120 6.2 Methodology 120 6.2.1 Numerical Method 120 6.2.2 Modeling of the Safety Scenarios 121 6.3 Assessment on Practical Storage Capacity 122 6.3.1 Test Case of three Injection Wells 124 6.3.2 Optimal Number of Injection Wells 132 6.3.3 Practical Storage Capacity 135 6.3.4 Open and Closed Reservoir Systems 141 6.3.5 Numerical Check for Factor of Safety in terms of Circular Plume Area 143 6.4 Assessment on Induced Pressure within the Sequestration Site 150 6.4.1 Pressure at the Injection Point 150 6.4.2 Pressure at the Bottom of Cap Rock 150 6.4.3 Safety Assessment of Induced Pressure 150 6.4.4 Numerical Check for Factor of Safety in terms of Induced Pressure 158 6.5 Summary 162 Chapter 7: Conclusions and Recommendations 164 7.1 Conclusions 164 7.2 Recommendations 165 References 168 Appendices 176 Method of Converting 2-D Stratigraphic Maps to 3-D Geological Model 176 | |
| dc.language.iso | en | |
| dc.subject | 地質封存 | zh_TW |
| dc.subject | 台西盆地 | zh_TW |
| dc.subject | 二相流實驗 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 鹽水層 | zh_TW |
| dc.subject | carbon geo-sequestration | en |
| dc.subject | saline formation | en |
| dc.subject | Taihsi Basin | en |
| dc.subject | two-phase flow test | en |
| dc.title | 盆地尺度二氧化碳地質封存有效儲存量評估與
安全情境模型建置-以台西盆地為例 | zh_TW |
| dc.title | Assessment on Effective Storage Capacity and Modeling of the Safety Scenarios for
Carbon Sequestration in Taiwan (Taihsi Basin as an Example) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄧屬予,胡植慶,宋聖榮,李通藝,顧承宇 | |
| dc.subject.keyword | 二氧化碳,地質封存,鹽水層,台西盆地,二相流實驗, | zh_TW |
| dc.subject.keyword | carbon geo-sequestration,saline formation,Taihsi Basin,two-phase flow test, | en |
| dc.relation.page | 182 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 10.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
