請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58586完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Ding-Shiun Tu | en |
| dc.contributor.author | 涂定勲 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:21:01Z | - |
| dc.date.available | 2016-03-08 | |
| dc.date.copyright | 2014-03-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-28 | |
| dc.identifier.citation | Ch1
1. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37. 2. Technical Targets for Photoelectrochemical Water Splitting, http://www1.eere.energy.gov/hydrogenandfuelcells/photoelectrochemical_group.html. http://www1.eere.energy.gov/hydrogenandfuelcells/photoelectrochemical_group.html. 3. Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan. (EERE)., U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE). Ed. 2012; http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/ 4. Khaselev, O.; Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425-427. 5. Lin, Y. J.; Yuan, G. B.; Sheehan, S.; Zhou, S.; Wang, D. W. Hematite-based solar water splitting: challenges and opportunities. Energy & Environmental Science 2011, 4, 4862-4869. 6. Li, Y.; Zhang, L.; Torres-Pardo, A.; Gonzalez-Calbet, J. M.; Ma, Y.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D.; Zhao, L.; Takanabe, K.; Kubota, J.; Domen, K. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun 2013, 4, 2566. 7. Lin, Y. G.; Hsu, Y. K.; Chen, Y. C.; Wang, S. B.; Miller, J. T.; Chen, L. C.; Chen, K. H. Plasmonic Ag@Ag3(PO4)(1-x) nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation. Energy & Environmental Science 2012, 5, 8917-8922. 8. Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction. Acs Nano 2013, 7, 1709-1717. 9. Zhang, Z. H.; Wang, P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. Journal of Materials Chemistry 2012, 22, 2456-2464. 10. Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Gratzel, M. Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy & Environmental Science 2012, 5, 8673-8681. 11. Leenaerts, O.; Partoens, B.; Peeters, F. M. Graphene: A perfect nanoballoon. Applied Physics Letters 2008, 93. 12. Scragg, J. J.; Watjen, J. T.; Edoff, M.; Ericson, T.; Kubart, T.; Platzer-Bjorkman, C. A Detrimental Reaction at the Molybdenum Back Contact in Cu2ZnSn(S,Se)(4) Thin-Film Solar Cells. Journal of the American Chemical Society 2012, 134, 19330-19333. Ch2 1. Gratzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344. 2. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 15729-15735. 3. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37. 4. Bard, A. J.; Fox, M. A. Artificial Photosynthesis - Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research 1995, 28, 141-145. 5. Turner, J. A. A realizable renewable energy future (vol 285, pg 687, 1999). Science 1999, 285, 1493-1493. 6. Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Limiting and Realizable Efficiencies of Solar Photolysis of Water. Nature 1985, 316, 495-500. 7. van de Krol, R.; Liang, Y. Q.; Schoonman, J. Solar hydrogen production with nanostructured metal oxides. Journal of Materials Chemistry 2008, 18, 2311-2320. 8. Sze, S. M. Physics of Semiconductor Devices. John Wiley & Sons, New York: 1981. 9. Weber, M. F.; Dignam, M. J. Splitting Water with Semiconducting Photoelectrodes Efficiency Considerations. International Journal of Hydrogen Energy 1986, 11, 225-232. 10. Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A. Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy 2006, 31, 1999-2017. 11. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chemical Reviews 2010, 110, 6446-6473. 12. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy 2002, 27, 991-1022. 13. Beach, J. D.; Collins, R. T.; Turner, J. A. Band-edge Potentials of n-type and p-type GaN. Journal of the Electrochemical Society 2003, 150, A899-A904. 14. Varghese, O. K.; Grimes, C. A. Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: A review with examples using titania nanotube array photoanodes. Solar Energy Materials and Solar Cells 2008, 92, 374-384. 15. Chen, Z. B.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research 2010, 25, 3-16. 16. S., C. Photoelectrochemical solar cells. NewYork: Gordon and Breach: 1985. 17. SR., M. Electrochemistry at semiconductor and oxidized metal electrodes. New York: Plenum Press: 1980. 18. Weinhardt, L.; Blum, M.; Bar, M.; Heske, C.; Cole, B.; Marsen, B.; Miller, E. L. Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. Journal of Physical Chemistry C 2008, 112, 3078-3082. 19. Bar, M.; Nishiwaki, S.; Weinhardt, L.; Pookpanratana, S.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J. D.; Shafarman, W. N.; Heske, C. Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films. Applied Physics Letters 2008, 93, 244103. 20. Turner, J. A. Energetics of the Semiconductor-Electrolyte Interface. Journal of Chemical Education 1983, 60, 327-329. 21. Cardon, F.; Gomes, W. P. Determination of Flat-Band Potential of a Semiconductor in Contact with a Metal or an Electrolyte from Mott-Schottky Plot. Journal of Physics D-Applied Physics 1978, 11, L63-L67. 22. Nozik, A. J.; Memming, R. Physical chemistry of semiconductor-liquid interfaces. Journal of Physical Chemistry 1996, 100, 13061-13078. 23. Chazalviel, J. N. Experimental-Techniques for the Study of the Semiconductor Electrolyte Interface. Electrochimica Acta 1988, 33, 461-476. 24. Koval, C. A.; Howard, J. N. Electron-Transfer at Semiconductor Electrode Liquid Electrolyte Interfaces. Chemical Reviews 1992, 92, 411-433. 25. Wikipedia. Inductively coupled plasma mass spectrometry. http://en.wikipedia.org/wiki/Inductively_coupled_plasma_mass_spectrometry. 26. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. Acs Nano 2013, 7, 2898-2926. 27. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z. P.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2d crystals. Materials Today 2012, 15, 564-589. 28. The Nobel Prize in Physics 2010. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/. 29. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314. 30. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010, 5, 574-578. 31. Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters 2009, 9, 4268-4272. 32. Petrone, N.; Dean, C. R.; Meric, I.; van der Zande, A. M.; Huang, P. Y.; Wang, L.; Muller, D.; Shepard, K. L.; Hone, J. Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene. Nano Letters 2012, 12, 2751-2756. 33. Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J. H.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W.; Fu, L. F.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters 2010, 10, 4328-4334. 34. Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society 2011, 133, 2816-2819. 35. Yoon, D.; Son, Y. W.; Cheong, H. Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Letters 2011, 11, 3227-3231. 36. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters 2009, 9, 30-35. 37. Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J. H.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. Acs Nano 2011, 5, 6916-6924. 38. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710. 39. Aleman, B.; Regan, W.; Aloni, S.; Altoe, V.; Alem, N.; Girit, C.; Geng, B. S.; Maserati, L.; Crommie, M.; Wang, F.; Zettl, A. Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes. Acs Nano 2010, 4, 4762-4768. 40. Lin, Y. C.; Jin, C. H.; Lee, J. C.; Jen, S. F.; Suenaga, K.; Chiu, P. W. Clean Transfer of Graphene for Isolation and Suspension. Acs Nano 2011, 5, 2362-2368. 41. Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters 2011, 99, 122108. 42. Caldwell, J. D.; Anderson, T. J.; Culbertson, J. C.; Jernigan, G. G.; Hobart, K. D.; Kub, F. J.; Tadjer, M. J.; Tedesco, J. L.; Hite, J. K.; Mastro, M. A.; Myers-Ward, R. L.; Eddy, C. R.; Campbell, P. M.; Gaskill, D. K. Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. Acs Nano 2010, 4, 1108-1114. 43. Jeong, S.; Jung, M. W.; Lee, J. Y.; Kim, H.; Lim, J.; An, K. S.; Choi, Y.; Lee, S. S. Graphene electrodes transfer-printed with a surface energy-mediated wet PDMS stamp: impact of Au doped-graphene for high performance soluble oxide thin-film transistors. Journal of Materials Chemistry C 2013, 1, 5632-5637. 44. Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M.; Bao, X. H.; Cheng, H. M. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications 2012, 3, 699. 45. Lock, E. H.; Baraket, M.; Laskoski, M.; Mulvaney, S. P.; Lee, W. K.; Sheehan, P. E.; Hines, D. R.; Robinson, J. T.; Tosado, J.; Fuhrer, M. S.; Hernandez, S. C.; Waltont, S. G. High-Quality Uniform Dry Transfer of Graphene to Polymers. Nano Letters 2012, 12, 102-107. 46. Her, M.; Beams, R.; Novotny, L. Graphene transfer with reduced residue. Physics Letters A 2013, 377, 1455-1458. 47. Cheng, Z. G.; Zhou, Q. Y.; Wang, C. X.; Li, Q. A.; Wang, C.; Fang, Y. Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices. Nano Letters 2011, 11, 767-771. 48. Wang, D.-Y.; Huang, I. S.; Ho, P.-H.; Li, S.-S.; Yeh, Y.-C.; Wang, D.-W.; Chen, W.-L.; Lee, Y.-Y.; Chang, Y.-M.; Chen, C.-C.; Liang, C.-T.; Chen, C.-W. Clean-Lifting Transfer of Large-area Residual-Free Graphene Films. Advanced Materials 2013, 25, 4521-4526. 49. Chen, C. F.; Park, C. H.; Boudouris, B. W.; Horng, J.; Geng, B. S.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G.; Wang, F. Controlling inelastic light scattering quantum pathways in graphene. Nature 2011, 471, 617-620. 50. Basko, D. M. Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities. New Journal of Physics 2009, 11, 095011. 51. Maultzsch, J.; Reich, S.; Thomsen, C. Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Physical Review B 2004, 70, 155403. 52. Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. Journal of Chemical Physics 1970, 53, 1126-1130. 53. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 2000, 61, 14095-14107. 54. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics 2007, 9, 1276-1291. 55. Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.; Chen, W.; Wee, A. T. S. Raman studies of monolayer graphene: The substrate effect. Journal of Physical Chemistry C 2008, 112, 10637-10640. 56. Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Advanced Materials 1999, 11, 605. 57. Nordling, C.; Sokolowski, E.; Siegbahn, K. Precision Method for Obtaining Absolute Values of Atomic Binding Energies. Physical Review 1957, 105, 1676-1677. 58. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nature Materials 2010, 9, 205-213. 59. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 37). Progress in Photovoltaics 2011, 19, 84-92. 60. Todorov, T. K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D. B. Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells. Advanced Energy Materials 2013, 3, 34-38. 61. Scragg, J. J.; Ericson, T.; Kubart, T.; Edoff, M.; Platzer-Bjorkman, C. Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing. Chemistry of Materials 2011, 23, 4625-4633. 62. Scragg, J. J.; Watjen, J. T.; Edoff, M.; Ericson, T.; Kubart, T.; Platzer-Bjorkman, C. A Detrimental Reaction at the Molybdenum Back Contact in Cu2ZnSn(S,Se)4 Thin-Film Solar Cells. Journal of the American Chemical Society 2012, 134, 19330-19333. 63. Fontane, X.; Calvo-Barrio, L.; Izquierdo-Roca, V.; Saucedo, E.; Perez-Rodriguez, A.; Morante, J. R.; Berg, D. M.; Dale, P. J.; Siebentritt, S. In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications. Applied Physics Letters 2011, 98, 181905. 64. Wang, K. J.; Shin, B.; Reuter, K. B.; Todorov, T.; Mitzi, D. B.; Guha, S. Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells. Applied Physics Letters 2011, 98, 051912. 65. Fernandes, P. A.; Salome, P. M. P.; da Cunha, A. F. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. Journal of Alloys and Compounds 2011, 509, 7600-7606. 66. Shin, B.; Zhu, Y.; Bojarczuk, N. A.; Chey, S. J.; Guha, S. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Applied Physics Letters 2012, 101, 053903. 67. Scragg, J. J.; Kubart, T.; Watjen, J. T.; Ericson, T.; Linnarsson, M. K.; Platzer-Bjorkman, C. Effects of Back Contact Instability on Cu2ZnSnS4 Devices and Processes. Chemistry of Materials 2013, 25, 3162-3171. 68. Lopez-Marino, S.; Placidi, M.; Perez-Tomas, A.; Llobet, J.; Izquierdo-Roca, V.; Fontane, X.; Fairbrother, A.; Espindola-Rodriguez, M.; Sylla, D.; Perez-Rodriguez, A.; Saucedo, E. Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. Journal of Materials Chemistry A 2013, 1, 8338-8343. 69. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology 2013, 8, 235-246. 70. Yu, V. Optics and chemical vapour deposition of graphene monolayers on various substrates. Ph.D. thesis, Mcgill University, 2010. 71. Luo, Z. Q.; Shang, J. Z.; Lim, S. H.; Li, D. H.; Xiong, Q. H.; Shen, Z. X.; Lin, J. Y.; Yu, T. Modulating the electronic structures of graphene by controllable hydrogenation. Applied Physics Letters 2010, 97, 233111. Ch3 1. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38. 2. Khaselev, O.; Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425-427. 3. Fujii, K.; Karasawa, T. K.; Ohkawa, K. Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. 2005, 44, L543-L545. 4. Fujii, K.; Ohkawa, K. Photoelectrochemical properties of p-type GaN in comparison with n-type GaN. Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. 2005, 44, L909-L911. 5. Fujii, K.; Ohkawa, K. Bias-assisted H2 gas generation in HCl and KOH solutions using n-type GaN photoelectrode. J. Electrochem. Soc. 2006, 153, A468-A471. 6. Ono, M.; Fujii, K.; Ito, T.; Iwaki, Y.; Hirako, A.; Yao, T.; Ohkawa, K. Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN. J Chem Phys 2007, 126, 054708. 7. Aryal, K.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X. Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells. Applied Physics Letters 2010, 96, 052110. 8. Kobayashi, N.; Narumi, T.; Morita, R. Hydrogen evolution from p-GaN cathode in water under UV light irradiation. Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. 2005, 44, L784-L786. 9. Li, J.; Lin, J. Y.; Jiang, H. X. Direct hydrogen gas generation by using InGaN epilayers as working electrodes. Appl Phys Lett 2008, 93, 162107. 10. Usui, S.; Kikawa, S.; Kobayashi, N.; Yamamoto, J.; Ban, Y.; Matsumoto, K. Comparison of Forward and Reverse Reactions in Hydrogen Generation between GaN, InGaN, Nanocrystalline TiO2 and Pt Electrodes during Water Electrolysis. Jpn J Appl Phys 2008, 47, 8793-8795. 11. Waki, I.; Cohen, D.; Lal, R.; Mishra, U.; DenBaars, S. P.; Nakamura, S. Direct water photoelectrolysis with patterned n-GaN. Appl Phys Lett 2007, 91, 093519. 12. Basilio, A. M.; Hsu, Y.-K.; Tu, W.-H.; Yen, C.-H.; Hsu, G.-M.; Chyan, O.; Chyan, Y.; Hwang, J.-S.; Chen, Y.-T.; Chen, L.-C.; Chen, K.-H. Enhancement of the energy photoconversion efficiency through crystallographic etching of a c-plane GaN thin film. J. Mater. Chem. 2010, 20, 8118-8125. 13. Chen, C. P.; Ganguly, A.; Wang, C. H.; Hsu, C. W.; Chattopadhyay, S.; Hsu, Y. K.; Chang, Y. C.; Chen, K. H.; Chen, L. C. Label-Free Dual Sensing of DNA Molecules Using GaN Nanowires. Anal. Chem. 2009, 81, 36-42. 14. Chen, H. Y.; Chen, R. S.; Chang, F. C.; Chen, L. C.; Chen, K. H.; Yang, Y. J. Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter. Appl Phys Lett 2009, 95, 143123. 15. Chen, R. S.; Chen, H. Y.; Lu, C. Y.; Chen, K. H.; Chen, C. P.; Chen, L. C.; Yang, Y. J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl Phys Lett 2007, 91, 223106. 16. Chen, R. S.; Wang, S. W.; Lan, Z. H.; Tsai, J. T. H.; Wu, C. T.; Chen, L. C.; Chen, K. H.; Huang, Y. S.; Chen, C. C. On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. Small 2008, 4, 925-929. 17. Girard, S. N.; He, J. Q.; Li, C. P.; Moses, S.; Wang, G. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. In Situ Nanostructure Generation and Evolution within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity. Nano Letters 2010, 10, 2825-2831. 18. Norskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23-J26. 19. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biornimetic hydrogen evolution: MoS2 nanoparticies as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309. 20. Huygens, I. M.; Theuwis, A.; Gomes, W. P.; Strubbe, K. Photoelectrochemical reactions at the n-GaN electrode in 1 M H2SO4 and in acidic solutions containing Cl- ions. Phys Chem Chem Phys 2002, 4, 2301-2306. Ch4 1. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38. 2. Khaselev, O.; Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425-427. 3. Khaselev, O.; Turner, J. A. Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting. J. Electrochem. Soc. 1998, 145, 3335-3339. 4. Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy. 2005, 78, 581-592. 5. Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J. Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 2008, 18, 2298-2303. 6. Woodhouse, M.; Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 2009, 38, 197-210. 7. Lin, Y. J.; Yuan, G. B.; Sheehan, S.; Zhou, S.; Wang, D. W. Hematite-based solar water splitting: challenges and opportunities. Energy & Environmental Science 2011, 4, 4862-4869. 8. Sivula, K.; Le Formal, F.; Gratzel, M. Solar Water Splitting: Progress Using Hematite (alpha-Fe2O3) Photoelectrodes. Chemsuschem 2011, 4, 432-449. 9. Yin, W. J.; Tang, H. W.; Wei, S. H.; Al-Jassim, M. M.; Turner, J.; Yan, Y. F. Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2. Phys. Rev. B, 2010, 82, 045106. 10. Breault, T. M.; Bartlett, B. M. Lowering the Band Gap of Anatase-Structured TiO2 by Coalloying with Nb and N: Electronic Structure and Photocatalytic Degradation of Methylene Blue Dye. J. Phys. Chem. C 2012, 116, 5986-5994. 11. Sun, T.; Lu, M. Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity. Appl. Phys. a-Mater. 2012, 108, 171-175. 12. Kanan, D. K.; Carter, E. A. Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst. J. Phys. Chem. C 2012, 116, 9876-9887. 13. Shet, S.; Ahn, K. S.; Yan, Y.; Deutsch, T.; Chrustowski, K. M.; Turner, J.; Al -Jassim, M.; Ravindra, N. Carrier concentration tuning of bandgap-reduced p-type ZnO films by codoping of Cu and Ga for improving photoelectrochemical response. J. Appl. Phys. 2008, 103. 14. Mayer, M. A.; Yu, K. M.; Speaks, D. T.; Denlinger, J. D.; Reichertz, L. A.; Beeman, J. W.; Haller, E. E.; Walukiewicz, W. Band Gap Engineering of Oxide Photoelectrodes: Characterization of ZnO1-xSex. J. Phys. Chem. C 2012, 116, 15281-15289. 15. Zhang, Z. H.; Wang, P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. Journal of Materials Chemistry 2012, 22, 2456-2464. 16. Paracchino, A.; Laporte, V.; Sivula, K.; Gratzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456-461. 17. Lin, Y. G.; Hsu, Y. K.; Chen, Y. C.; Wang, S. B.; Miller, J. T.; Chen, L. C.; Chen, K. H. Plasmonic Ag@Ag3(PO4)(1-x) nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation. Energy & Environmental Science 2012, 5, 8917-8922. 18. Wang, G. M.; Ling, Y. C.; Wang, H. Y.; Yang, X. Y.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energ. Environ. Sci. 2012, 5, 6180-6187. 19. Jain, S. C.; Willander, M.; Narayan, J.; Van Overstraeten, R. III-nitrides: Growth, characterization, and properties. J. Appl. Phys. 2000, 87, 965-1006. 20. Zhuang, D.; Edgar, J. H. Wet etching of GaN, AlN, and SiC: a review. Materials Science and Engineering: R: Reports 2005, 48, 1-46. 21. Fujii, K.; Ohkawa, K. Photoelectrochemical properties of p-type GaN in comparison with n-type GaN. Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. 2005, 44, L909-L911. 22. Fujii, K.; Ohkawa, K. Bias-assisted H2 gas generation in HCl and KOH solutions using n-type GaN photoelectrode. J. Electrochem. Soc. 2006, 153, A468-A471. 23. Basilio, A. M.; Hsu, Y. K.; Tu, W. H.; Yen, C. H.; Hsu, G. M.; Chyan, O.; Chyan, Y.; Hwang, J. S.; Chen, Y. T.; Chen, L. C.; Chen, K. H. Enhancement of the energy photoconversion efficiency through crystallographic etching of a c-plane GaN thin film. J. Mater. Chem. 2010, 20, 8118-8125. 24. Tu, W. H.; Hsu, Y. K.; Yen, C. H.; Wu, C. I.; Hwang, J. S.; Chen, L. C.; Chen, K. H. Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation. Electrochem. Commun. 2011, 13, 530-533. 25. Hwang, Y. J.; Wu, C. H.; Hahn, C.; Jeong, H. E.; Yang, P. D. Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties. Nano Letts 2012, 12, 1678-1682. 26. Pendyala, C.; Jasinski, J. B.; Kim, J. H.; Vendra, V. K.; Lisenkov, S.; Menon, M.; Sunkara, M. K. Nanowires as semi-rigid substrates for growth of thick, InxGa1-xN (x > 0.4) epi-layers without phase segregation for photoelectrochemical water splitting. Nanoscale 2012, 4, 6269-6275. 27. Moses, P. G.; Miao, M. S.; Yan, Q. M.; Van de Walle, C. G. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. J. Chem. Phys. 2011, 134. 28. Moses, P. G.; Van de Walle, C. G. Photo-electrochemical water splitting by GaN, InGaN, and ZnO: A density functional theory study. Abstr. Pap. Am. Chem. S 2010, 239. 29. Aryal, K.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X. Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells. Applied Physics Letters 2010, 96, 052110. 30. Li, J.; Lin, J. Y.; Jiang, H. X. Direct hydrogen gas generation by using InGaN epilayers as working electrodes. Appl. Phys. Lett. 2008, 93, 162107. 31. Fujii, K.; Kusakabe, K.; Ohkawa, K. Photoelectrochemical properties of InGaN for H2 generation from aqueous water. Jpn. J. Appl. Phys. 1 2005, 44, 7433-7435. 32. http://www.unwater.org/statistics_res.html. Water Resources. http://www.unwater.org/statistics_res.html. 33. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/ wwdr4-2012/. 34. Luo, W. J.; Yang, Z. S.; Li, Z. S.; Zhang, J. Y.; Liu, J. G.; Zhao, Z. Y.; Wang, Z. Q.; Yan, S. C.; Yu, T.; Zou, Z. G. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energ. Environ. Sci. 2011, 4, 4046-4051. 35. Fujii, K.; Ito, T.; Ono, M.; Iwaki, Y.; Yao, T.; Ohkawa, K. Investigation of surface morphology of n-type GaN after photoelectrochemical reaction in various solutions for H2 gas generation. physica status solidi (c) 2007, 4, 2650-2653. 36. Ono, M.; Fujii, K.; Ito, T.; Iwaki, Y.; Hirako, A.; Yao, T.; Ohkawa, K. Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN. J. Chem. Phys. 2007, 126. 37. Park, J.; Song, K. M.; Jeon, S. R.; Baek, J. H.; Ryu, S. W. Doping selective lateral electrochemical etching of GaN for chemical lift-off. Appl. Phys. Lett. 2009, 94. 38. Peng, L. H.; Chuang, C. W.; Ho, J. K.; Huang, C. N.; Chen, C. Y. Deep ultraviolet enhanced wet chemical etching of gallium nitride. Appl. Phys. Lett. 1998, 72, 939-941. 39. Elsner, J.; Jones, R.; Haugk, M.; Gutierrez, R.; Frauenheim, T.; Heggie, M. I.; Oberg, S.; Briddon, P. R. Effect of oxygen on the growth of (10(1)over-bar0) GaN surfaces: The formation of nanopipes. Appl. Phys. Lett. 1998, 73, 3530-3532. 40. Wolter, S. D.; Luther, B. P.; Waltemyer, D. L.; Onneby, C.; Mohney, S. E.; Molnar, R. J. X-ray photoelectron spectroscopy and x-ray diffraction study of the thermal oxide on gallium nitride. Appl. Phys. Lett. 1997, 70, 2156-2158. 41. Huygens, I. M.; Theuwis, A.; Gomes, W. P.; Strubbe, K. Photoelectrochemical reactions at the n-GaN electrode in 1 M H2SO4 and in acidic solutions containing Cl- ions. Phys. Chem. Chem. Phys. 2002, 4, 2301-2306. 42. Peng, L. H.; Liao, C. H.; Hsu, Y. C.; Jong, C. S.; Huang, C. N.; Ho, J. K.; Chiu, C. C.; Chen, C. Y. Photoenhanced wet oxidation of gallium nitride. Appl. Phys. Lett. 2000, 76, 511-513. 43. Sakata, Y.; Matsuda, Y.; Nakagawa, T.; Yasunaga, R.; Imamura, H.; Teramura, K. Remarkable Improvement of the Photocatalytic Activity of Ga2O3 Towards the Overall Splitting of H2O. Chemsuschem 2011, 4, 181-184. 44. Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters 2010, 10, 1645-1651. Ch5 1. Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: Corrosion-Inhibiting Coating. Acs Nano 2012, 6, 1102-1108. 2. Topsakal, M.; Sahin, H.; Ciraci, S. Graphene coatings: An efficient protection from oxidation. Phys. Rev. B 2012, 85, 155445. 3. Roy, S. S.; Arnold, M. S. Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering. Adv. Funct. Mater. 2013, 3638-3644. 4. Raman, R. K. S.; Banerjee, P. C.; Lobo, D. E.; Gullapalli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P. M.; Majumder, M. Protecting copper from electrochemical degradation by graphene coating. Carbon 2012, 50, 4040-4045. 5. Chen, T. L.; Ghosh, D. S.; Formica, N.; Pruneri, V. Graphene as an anti-permeation and protective layer for indium-free transparent electrodes. Nanotechnology 2012, 23, 395603. 6. Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J. Y.; Park, J.; Ruoff, R. S. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. Acs Nano 2011, 5, 1321-1327. 7. Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. Acs Nano 2013, 7, 5763-5768. 8. Chang, C. H.; Huang, T. C.; Peng, C. W.; Yeh, T. C.; Lu, H. I.; Hung, W. I.; Weng, C. J.; Yang, T. I.; Yeh, J. M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50, 5044-5051. 9. Zhang, W.; Yi, M.; Shen, Z.; Zhao, X.; Zhang, X.; Ma, S. Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance. J. Mater. Sci. 2013, 48, 2416-2423. 10. Ghasemi, H. High temperature sulfidation of carbon steel heater tubes in gas condensate containing sulfur compounds. Eng. Fail. Anal. 2011, 18, 980-987. 11. Lu, Z. S.; Kullgren, J.; Yang, Z. X.; Hermansson, K. Sulfidation of Ceria Surfaces from Sulfur and Sulfur Diffusion. J. Phys. Chem. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58586 | - |
| dc.description.abstract | 表面和介面改善對於材料的應用特性有極大的影響。在本論文中嘗試使用兩種不一樣的表面處理來改善氮化鎵光電化學分解水的效能。在p-型氮化鎵上,關鍵的起始電位會因為奈米金粒子所造成的能帶彎曲改變而有所移動,進而將零偏壓下的效率由0.02%增加到0.59%。最令人驚訝的是金本身在電化學上並不是有利於產生氫氣的催化反應的,因此此處的機制和一般電化學中的催化行為不同。另一方面,為了光電化學分解水產氫研究的長久發展,可比擬為海水,接近酸鹼中性的氯化鈉水溶液做為電解液的效果也被驗證了。在表面形成的薄層氧化層可以做為表面遮蔽層,也因此光電流會隨著時間增加,最後達飽和。最重要的是,由於表面氧化層的保護,光電流能穩定超過12個小時,反應的穩定性大幅提升,而該氧化層在接近中性的氯化鈉中並不會被移除掉。在介面改善的實際應用方面,單層石墨烯被發現具有做為硫/硒擴散阻擋層的獨特特性,未來將能夠應用到銅鋅錫硫(硒)化合物太陽能電池上。石墨烯和二維材料新穎又迷人的獨特特性將有機會能為太陽能光電化學分解水或太陽能電池帶來一些突破性的發展。 | zh_TW |
| dc.description.abstract | Surface and interface modification have huge influences on material characteristics. In this thesis, two different surface modification methods were demonstrated to enhance the performance of GaN photo-electrochemical water splitting. The critical on-set potential of p-GaN can be shifted by gold nanoparticle deposition, which leads to an enhanced zero-bias efficiency from 0.02% to 0.59%. As gold is electrochemically unfavorable to hydrogen generation, the enhancement mechanism is completely different from the general catalyzing behavior in electrochemistry. In addition, for long term development of PEC water splitting, utilization of a near-neutral NaCl solution was examined, which is analogous to sea water. The thin oxide layer formed at the surface acts as a surface passivation layer, causing the photocurrent to increase with time and finally saturate. The most significant consequence is an enhanced durability of over 12 hours resulting from protection by the oxide, which is not removed in the near-neutral NaCl solution. For application in interface modification, the unique property of graphene in acting as a sulfur/selenium diffusion barrier was discovered, and can be applied to Cu2ZnSnS(e)(2) solar cells in the future. The novel and fantastic features of graphene and 2D materials would likely lead to some breakthrough in either solar water splitting or solar photovoltaic technologies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:21:01Z (GMT). No. of bitstreams: 1 ntu-103-D97941003-1.pdf: 6915465 bytes, checksum: 43c3734cedc1df7c95e3515d936ccd85 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Abstract I
摘要 III Content V List of Figures VIII Chapter 1 Introduction 1 Reference 7 Chapter 2 Literature Review 10 2.1 Photo-electrochemical hydrogen generation 10 2.1.1 Introduction 10 2.1.2 Theories and standards 11 2.1.3 Measurement methods 16 2.2 Graphene and two-dimensional materials[26, 27] 18 2.2.1 Introduction 18 2.2.2 CVD growth and transfer 19 2.2.3 Characterizations 21 2.3 CuZnSnS(e) solar cell 24 2.3.1 Introduction 24 2.3.2 The instability of CZTS/Mo interface and the protection layer 25 Reference 32 Chapter 3 Au nano-particle modified GaN photo-electrode for photo-electrochemical hydrogen generation 44 3.1 Introduction 44 3.2 Experimental details 45 3.2.1 Sample preparation 45 3.2.2 PEC measurement 46 3.3 The shift of the onset-potential and the increased zero bias photo-current 46 3.4 Fermi-level pinning of the Au nano-particles decorated GaN surface 47 3.5 The efficiency and stability analysis 49 3.6 Conclusion 50 Reference 56 Chapter 4 Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation 60 4.1 Introduction 60 4.2 Experimental details 62 4.2.1 Photoelectrochemical measurements 62 4.2.2 Characterization 63 4.3 The enhanced photo-current and long-term stability for GaN 63 4.4 The surface oxidation and etching of GaN photo-anode 65 4.5 The analysis and band diagram 67 4.5.1 The gallium ion concentration analysis by ICP-MS 68 4.5.2 The Mott-Schottky measurements and the band diagram 69 4.6 Conclusion 71 Reference 85 Chapter 5 Graphene as a protection barrier to high temperature selenization and sulfurization 92 5.1 Introduction 92 5.2 Experimental details 93 5.2.1 Theoretical calculation 93 5.2.2 Material preparation and characteristics 94 5.3 The DFT simulation and experimental results 95 5.4 The influence of sulfurization and selenization to graphene 98 5.5 The graphene tearing and thermal expansion corfficient mismatch 99 5.6 Conclusion 103 Reference 117 Chapter 6 Conclusion 122 Reference 124 | |
| dc.language.iso | en | |
| dc.subject | 介面 | zh_TW |
| dc.subject | 光電化學分解水 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 表面 | zh_TW |
| dc.subject | water splitting | en |
| dc.subject | photoelectrochemical | en |
| dc.subject | solar cells | en |
| dc.title | 光電化學分解水和太陽能電池之表面和介面改善 | zh_TW |
| dc.title | The surface and interface modification for photoelectrochemical water splitting and solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳貴賢,林麗瓊,黃智賢,陳瑞山,陳奕君 | |
| dc.subject.keyword | 光電化學分解水,太陽能電池,表面,介面, | zh_TW |
| dc.subject.keyword | photoelectrochemical,water splitting,solar cells, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
