Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58551
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorLiang-Yu Pangen
dc.contributor.author龎亮瑜zh_TW
dc.date.accessioned2021-06-16T08:19:34Z-
dc.date.available2019-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-02-07
dc.identifier.citationReferences
Alemu EA, Lamark T, Torgersen KM, Birgisdottir AB, Larsen KB, Jain A, Olsvik H, Overvatn A, Kirkin V, Johansen T (2012) ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. The Journal of biological chemistry 287: 39275-39290
Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nature biotechnology 24: 1285-1292
Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, Camonis JH, Yeaman C, Levine B, White MA (2011) RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144: 253-267
Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs. Trends in biochemical sciences 20: 117-122
Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proceedings of the National Academy of Sciences of the United States of America 108: 4123-4128
Chan EY (2012) Regulation and function of uncoordinated-51 like kinase proteins. Antioxidants & redox signaling 17: 775-785
Cheong H, Lindsten T, Wu J, Lu C, Thompson CB (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proceedings of the National Academy of Sciences of the United States of America 108: 11121-11126
Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annual review of biochemistry 78: 399-434
Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D'Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia GM (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. The Journal of cell biology 191: 155-168
Dodson M, Darley-Usmar V, Zhang J (2013) Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free radical biology & medicine 63: 207-221
Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR (2011) ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 7: 737-747
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461
Furukawa M, He YJ, Borchers C, Xiong Y (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nature cell biology 5: 1001-1007
Gammoh N, Florey O, Overholtzer M, Jiang X (2013) Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy. Nature structural & molecular biology 20: 144-149
Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. The Journal of biological chemistry 284: 12297-12305
Gao W, Shen Z, Shang L, Wang X (2011) Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell death and differentiation 18: 1598-1607
Geyer R, Wee S, Anderson S, Yates J, Wolf DA (2003) BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Molecular cell 12: 783-790
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell 30: 214-226
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. The Journal of cell biology 181: 497-510
Hindi SM, Sato S, Choi Y, Kumar A (2013) Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Human molecular genetics
Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic acids research 40: D261-270
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577-590
Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, Steeves MA, Yang CY, Prater SM, Kim DH, Thompson CB, Youle RJ, Ney PA, Cleveland JL, Kundu M (2011) Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Molecular cell 43: 572-585
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell 20: 1992-2003
Jung CH, Seo M, Otto NM, Kim DH (2011) ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 7: 1212-1221
Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology 13: 132-141
Komander D, Rape M (2012) The ubiquitin code. Annual review of biochemistry 81: 203-229
Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Molecular cell 40: 280-293
Lee EJ, Tournier C (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7: 689-695
Lee YR, Yuan WC, Ho HC, Chen CH, Shih HM, Chen RH (2010) The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. The EMBO journal 29: 1748-1761
Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132: 27-42
Lin MY, Lin YM, Kao TC, Chuang HH, Chen RH (2011) PDZ-RhoGEF ubiquitination by Cullin3-KLHL20 controls neurotrophin-induced neurite outgrowth. The Journal of cell biology 193: 985-994
Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, Wang Z, Zhang CS, Chien KY, Wu J, Li Q, Han J, Lin SC (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336: 477-481
Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, Campbell DG, Wesselborg S, Alessi DR, Stork B (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7: 696-706
Low P, Varga A, Pircs K, Nagy P, Szatmari Z, Sass M, Juhasz G (2013) Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC cell biology 14: 29
Mack HI, Zheng B, Asara JM, Thomas SM (2012) AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8: 1197-1214
Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I (2008) Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscular disorders : NMD 18: 521-529
Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. Journal of cell science 125: 531-537
Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728-741
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular biology of the cell 15: 1101-1111
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM, Cecconi F (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature cell biology 15: 406-416
Nigg EA (1993) Cellular substrates of p34(cdc2) and its companion cyclin-dependent kinases. Trends in cell biology 3: 296-301
Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406: 906-910
Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Molecular biology of the cell 23: 1860-1873
Pang R, Lee TK, Poon RT, Fan ST, Wong KB, Kwong YL, Tse E (2007) Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 132: 1088-1103
Pike LR, Singleton DC, Buffa F, Abramczyk O, Phadwal K, Li JL, Simon AK, Murray JT, Harris AL (2013) Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. The Biochemical journal 449: 389-400
Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330: 1344-1348
Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Developmental cell 6: 79-90
Ro SH, Jung CH, Hahn WS, Xu X, Kim YM, Yun YS, Park JM, Kim KH, Seo M, Ha TY, Arriaga EA, Bernlohr DA, Kim DH (2013) Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes. Autophagy 9: 2103-2114
Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Current biology : CB 22: R29-34
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature cell biology 15: 741-750
Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome biology 12: 220
Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes to cells : devoted to molecular & cellular mechanisms 14: 525-538
Shang L, Chen S, Du F, Li S, Zhao L, Wang X (2011) Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proceedings of the National Academy of Sciences of the United States of America 108: 4788-4793
Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. The Plant cell 23: 3761-3779
Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC (2011) Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. The EMBO journal 30: 636-651
Wong PM, Puente C, Ganley IG, Jiang X (2013) The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9: 124-137
Yaffe MB (1997) Sequence-Specific and Phosphorylation-Dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science 278: 1957-1960
Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. Journal of cell science 119: 3888-3900
Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332: 1322-1326
Yuan WC, Lee YR, Huang SF, Lin YM, Chen TY, Chung HC, Tsai CH, Chen HY, Chiang CT, Lai CK, Lu LT, Chen CH, Gu DL, Pu YS, Jou YS, Lu KP, Hsiao PW, Shih HM, Chen RH (2011) A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer cell 20: 214-228
Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO reports 10: 285-292
Zavodszky E, Vicinanza M, Rubinsztein DC (2013) Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS letters 587: 1988-1996
Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, Wang F (2007) Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proceedings of the National Academy of Sciences of the United States of America 104: 5842-5847
Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. The Journal of clinical investigation 117: 1782-1793
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58551-
dc.description.abstract細胞透過細胞自噬維持細胞恆定,並藉由回收細胞質中物質幫助細胞度過逆境。ULK1蛋白作為細胞自噬過程中最重要的蛋白激酶調控了細胞自噬從早期到晚期的各個步驟,然而目前尚未完全清楚ULK1如何受到調控。在此篇研究中,我們發掘一個透過Cul3-KLHL20複合體E3泛素連接酶調控之ULK1蛋白酶體降解機制。Cul3-KLHL20複合體能夠促進ULK1泛素化及降解並於細胞養分充足狀態下調控細胞自噬的基礎活性。更重要的是我們發現細胞自噬的活化能夠促進KLHL20所調控之ULK1降解。在細胞養分不足時,KLHL20和ULK1的結合會逐漸增加而ULK1蛋白質則因降解而逐漸減少。此外,內質網壓力、粒腺體損壞等逆境所刺激之細胞自噬也會活化相同的調控機制。KLHL20所調控的ULK1降解控制了細胞自噬的活性以及活化時間進而避免細胞自噬活化過久及活性過強所造成的損害。在這篇研究中,我們發現了一個從未被報導過的ULK1的調控機轉,此一機轉可能對於維持細胞恆定相當重要。zh_TW
dc.description.abstractAutophagy, a cellular self-eating mechanism, is important for maintaining homeostasis and recycling cytosolic materials in response to various stresses such as starvation. ULK1 is the most critical protein kinase whose function in autophagy spans throughout early to late stage. However, the regulatory mechanism of ULK1 remains largely elusive. In this thesis, we discovered a novel ubiquitin-proteasomal regulation of ULK1 mediated by Cul3-KLHL20 complex, an E3 ubiquitin ligase. At nutrient rich conditions, we demonstrated that Cul3-KLHL20 promotes ULK1 ubiquitination and degradation, and thus controls the activity of basal autophagy. More importantly, we showed that KLHL20-mediated ULK1 degradation is stimulated by the activation of autophagy. During starvation, KLHL20 and ULK1 interaction is gradually increased while the amount of ULK1 is gradually decreased. The similar mode of ULK1 regulation occurs during autophagy induced by ER stress, mitochondria damage and other stress conditions. We further showed that this KLHL20-dependent ULK1 regulation controls the amplitude and duration of autophagy to prevent prolonged or overly activated autophagy. This study identifies a novel regulatory mechanism for ULK1 and suggests a key role of this regulation in maintaining cell homeostasis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:19:34Z (GMT). No. of bitstreams: 1
ntu-103-R00448016-1.pdf: 14424608 bytes, checksum: 4f980a8df9c4e28f13ed4e182b7639df (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書
致謝 i
摘要 ii
Abstract iii
Introduction 1
1. Autophagy 1
1.1 ULK1 in the Regulation of Autophagy 2
1.2 Regulation of ULK1 4
2. Ubiquitin-Proteasome System 7
2.1 KLHL20 8
Material and Methods 10
Cell culture 10
Plasmids 10
Transient transfection and lentivirus infection 11
Antibodies and reagents 11
Immunoprecipitation 11
Western blot 12
Autophagy assay 12
Results 13
KLHL20 interacts with ULK1 13
Cul3-KLHL20 E3 ligase promotes ULK1 ubiquitination and degradation 14
KLHL20 is a general regulator of autophagy 15
KLHL20 mediates autophagy-induced ULK1 downregulation 16
KLHL20 regulates the duration of autophagy 18
Starvation promotes the interaction between KLHL20 and ULK1 19
Discussion 20
References 26
Figures 32
Appendixes 44
dc.language.isoen
dc.subjectKLHL20zh_TW
dc.subjectULK1zh_TW
dc.subject蛋白?體zh_TW
dc.subject泛素zh_TW
dc.subject細胞自噬zh_TW
dc.subjectcullin3zh_TW
dc.subjectKLHL20en
dc.subjectubiquitinen
dc.subjectproteasomeen
dc.subjectULK1en
dc.subjectcullin3en
dc.subjectautophagyen
dc.title探討細胞自噬所調控之ULK1蛋白泛素化修飾及降解zh_TW
dc.titleAutophagy-reugulated ubiquitination and proteasomal degradation of ULK1en
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光超(Guang-Chao Chen),吳君泰(June-Tai Wu)
dc.subject.keyword細胞自噬,泛素,蛋白?體,ULK1,cullin3,KLHL20,zh_TW
dc.subject.keywordautophagy,ubiquitin,proteasome,ULK1,cullin3,KLHL20,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2014-02-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
14.09 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved