請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
| dc.contributor.author | Yu-Pin Lu | en |
| dc.contributor.author | 呂毓蘋 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:19:22Z | - |
| dc.date.available | 2019-03-18 | |
| dc.date.copyright | 2014-03-18 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-07 | |
| dc.identifier.citation | AbuQamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, R. A. and Mengiste, T. (2006). Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. The Plant journal : for cell and molecular biology 48: 28-44.
Allan, A. C., Lapidot, M., Culver, J. N. and Fluhr, R. (2001). An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol 126: 97-108. Apostol I, H. P., Low PS (1989). Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. plant physiology 99: 109-116. Berrocal-Lobo M, M. A., Solano R (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant Journal 291: 23-32. Birkenbihl, R. P., Diezel, C. and Somssich, I. E. (2012). Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159: 266-285. Bradley DJ, K. P., Lamb CJ (1992). Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21-30. Caroline S. Moffat, R. A. I., Deepthi L. Wathugala, Nigel J. Saunders, Heather Knight, and Knight, M. R. (2012). ERF5 and ERF6 Play Redundant Roles as Positive Regulators of JA/Et-Mediated Defense against Botrytis cinerea in Arabidopsis. PLoS ONE 7: e35995. Choquer M, F. E., Kunz C, Levis C, Pradier JM (2007). Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277: 1-10. Dong, C. J. and Liu, J. Y. (2010). The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC plant biology 10: 47-61. Durrant, W. E. and Dong, X. (2004). Systemic acquired resistance. Annual review of phytopathology 42: 185-209. Fernandez-Calvo, P., Chini, A., Fernandez-Barbero, G., Chico, J. M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., Franco-Zorrilla, J. M., Pauwels, L., Witters, E., Puga, M. I., Paz-Ares, J., Goossens, A., Reymond, P., De Jaeger, G. and Solano, R. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant cell 23: 701-715. Gachon, C. and Saindrenan, P. (2004). Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea. Plant physiology and biochemistry : PPB / Societe francaise de physiologie vegetale 42: 367-371. Govrin, E. M. and Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10: 751-757. Grant JJ, L. G. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease. Plant Physiology 124: 21-29. Huq, E. (2006). Degradation of negative regulators: a common theme in hormone and light signaling networks? Trends in plant science 11: 4-7. Inze, A., Vanderauwera, S., Hoeberichts, F. A., Vandorpe, M., Van Gaever, T. and Van Breusegem, F. (2012). A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant, cell & environment 35: 308-320. KariolaT, BraderG, Li J and ET, P. (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant cell 17: 282-294. Kazan, K. (2006). Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends in plant science 11: 109-112. King, E. O., Ward, M. K. and Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301-307. Kunkel BN, B. D. (2002). Cross talk between signaling pathways in pathogen defense Curr Opin Plant Biol 5: 325-331. Lamb C, D. R. (1997). The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275. Laurent Zimmerli, J.-P. M. a. B. M.-M. (2001). β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea. Plant Physiology 126: 517-523. Łaźniewska, J., Macioszek, V. K., Lawrence, C. B. and Kononowicz, A. K. (2009). Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiologiae Plantarum 32: 1-10. Levine A, T. R., Dixon R, Lamb CJ (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance respons. cell 79: 583-593. Marc Libault, J. W., Tomasz Czechowski,Michael Udvardi,and Gary Stacey (2007). Identification of 118 Arabidopsis Transcription Factorand 30 Ubiquitin-Ligase Genes Responding to Chitin, a Plant-Defense Elicitor. MPMI 20: 900-910. Masaru Ohta, K. M., a Keiichiro Hiratsu, a Hideaki Shinshi, b and Masaru Ohme-Takagi (2001). Repression Domains of Class II ERF Transcriptional Repressors Share an Essential Motif for Active Repression. Plant Cel 13: 1959-1967. McGrath, K. C. (2005). Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology 139: 949-959. Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D. and Ausubel, F. M. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. The Plant cell 22: 973-990. Mur LA, K. P., Lloyd AJ, Ougham H, Prats E. (2008). The hypersensitive response: the centenary is upon us but how much do we know? . The Journal of biological chemistry 59: 501-520. Nakano, T., Suzuki, K., Fujimura, T. and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140: 411-432. Norman-Setterblad C, V. S., Palva ET (2000). Interacting signal pathway control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant-microbe Interact 13: 430-438. Ohta, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959–1968. Pieterse, C. M., Leon-Reyes, A., Van der Ent, S. and Van Wees, S. C. (2009). Networking by small-molecule hormones in plant immunity. Nature chemical biology 5: 308-316. Porra RJ, T. W., Kriedemann PE (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll II standards by atomic absorption spectroscopy. Biochimica et biophysica acta 975 Pre M, A. M., Champion A, De Vos M, Pieterse CMJ, Memelink J (2008). The AP2 ⁄ ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. plant physiology 147: 1347-1357. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C.,Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha,R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z.,Ghandehari, D., Sherman, B.K. and Yu, G (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110. Simon-Plas F, E. T., Blein J-P (2002). The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant Journal 31: 137-148. Singh, P., Kuo, Y. C., Mishra, S., Tsai, C. H., Chien, C. C., Chen, C. W., Desclos-Theveniau, M., Chu, P. W., Schulze, B., Chinchilla, D., Boller, T. and Zimmerli, L. (2012). The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. The Plant cell 24: 1256-1270. Solano, R., Stepanova, A., Chao, Q. and Ecker, J. R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703-3714. Song, C.-P. (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. The Plant cell 17: 2384–2396. Steven J. Clough, A. F. B. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal 16: 735-743. Thiel, G. (2004). How mammalian transcriptional repressor work. Eur. J. Biochem 271: 2855-2862. Thordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6: 351-357. Torres, M. A., Dangl, J. L., and Jones, J. D. (2002). Arabidopsis gp91 phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. U. S. A 99: 517-522. Torres, M. A., Jones, J. D. and Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol 141: 373-378. Wehner, N., Hartmann, L., Ehlert, A., Bottner, S., Onate-Sanchez, L. and Droge-Laser, W. (2011). High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. The Plant journal : for cell and molecular biology 68: 560-569. Weiste, C. I., T.Fischer, U.Onate-Sanchez, L.Droge-Laser, W. (2007). In planta ORFeome analysis by large-scale over-expression of GATEWAY-compatible cDNA clones: screening of ERF transcription factors involved in abiotic stress defense. The Plant journal : for cell and molecular biology 52: 382-390. Wong, P. K. (2000). Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll–a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41: 177-182. Yang, Z. T., L. N. Latoszek-Green, M. Brown, D. Wu, K. Q. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58: 585-596. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD and N, D. (2003). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. The Plant cell 15: 706-718. Zaninotto F., C. S. L., Polverari A. & Delledonne M (2006). Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology 141: 379-383. Zarei A, K. A., Younessi P, Montiel G, Champion A, Memelink J (2011). Two GCC boxes and AP2 ⁄ ERF-domain transcription factor ORA59 in jasmonate ⁄ ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75: 321-331. Zhao, Y., Wei, T., Yin, K. Q., Chen, Z., Gu, H., Qu, L. J. and Qin, G. (2012). Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. The New phytologist Zimmerli, L., Jakab, G., Metraux, J. P. and Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America 97: 12920-12925. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58546 | - |
| dc.description.abstract | 灰黴病菌是(Botrytis cinerea)一種會感染多種作物的腐生型真菌。灰黴病菌會刺激植物宿主產生大量活性氧物種來促進宿主細胞死亡進而造成感染。在阿拉伯芥中,茉莉酸及乙烯訊號傳遞路徑對於抵抗灰黴病菌扮演重要的角色,而乙烯反應轉錄因子(ETHYLENE RESPONSE FACTORs, ERFs)也參與其中。藉由篩選過度表現轉錄因子的種子庫,我們發現阿拉伯芥ERF19在抵抗灰黴病菌中扮演重要腳色。ERF19是屬於ERF/AP2轉錄因子中的DREB亞家族。ERF19過度表現植株在感染灰黴病菌後呈現較嚴重的壞死病徵,並且茉莉酸/乙烯路徑中的植物防禦素PDF1.2的基因表現量也較低。再者,ERF19過度表現植株累積更多的活性氧物種。綜合而言,我們研究結果顯示ERF19不但參與了茉莉酸/乙烯路徑的調控,也可能影響活性氧物種的累積。之後藉由研究ERF19所結合的DNA序列將有助於深入瞭解ERF19在阿拉伯芥抵抗灰黴病菌的作用機制。 | zh_TW |
| dc.description.abstract | Botrytis cinerea is a necrotrophic fungal pathogen that attacks many crop plants. B. cinerea triggers plants to generate large amounts of reactive oxygen species (ROS) and induces local cell death to facilitate infection. Both jasmonic acid (JA) and ethylene (ET) signaling pathways play critical roles during Arabidopsis resistance to B. cinerea. Some ETHYLENE RESPONSE FACTORs (ERFs) are known to be involved in B. cinerea resistance. Through the screening of an over-expression transcription factors library, we identified AtERF19 as a critical player in Arabidopsis resistance to B. cinerea. ERF19 belongs to the DREB subfamily A-5 of ERF/AP2 transcription factor. Arabidopsis lines over-expressing ERF19 developed more severe necrosis symptoms than wild-type plants. Moreover, accumulation of the JA/ET-dependent plant defensin PDF1.2 was reduced in mock- and B. cinerea-inoculated ERF19 over-expression lines. In addition, a stronger ROS burst was observed in OE lines. Our findings suggest that not only the ROS burst but also JA/ET signaling pathways are probably associated with AtERF19-mediated signaling in response to B. cinerea attack. Further studies of AtERF19 binding sequences and target genes will help elucidate the role of the plant transcription factor ERF19 during Arabidopsis infection by B. cinerea. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:19:22Z (GMT). No. of bitstreams: 1 ntu-103-R98b42021-1.pdf: 2727370 bytes, checksum: 88e3ca43e084551f4e076da6cff5e5a3 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Introduction 1 1. Plant defense 1 2. Infection strategies of B. cinerea 2 3. Functions of ROS following infection 3 4. Ethylene response factors (ERFs) 4 5. Negative regulation of stress gene expression 5 Objectives 7 Material and Methods 8 1. Biological Materials 8 2. Pathogen infection assays 8 3. Total RNA preparation, reverse transcription and quantitative RT-PCR 10 4. CaMV35S ERF19 and ERF19-GFP fusion constructs 11 5. AtERF19- promoter:: β-glucurodinase (GUS) constructs and histochemical GUS assay 11 6. Imaging of ROS in Arabidopsis 12 7. Chemical treatments 13 8. Protoplast preparation 13 9. Transient ERF19 localization analysis 14 10. Luciferase activity assay 14 11. Total Chlorophyll Measurements 15 Results 17 1. Large scale screening of transgenic lines over-expressing transcription factors in Arabidopsis 17 2. Lines over-expressing ERF19 exhibit enhanced susceptibility to B. cinerea 19 3. ERF19 is localized in the cytoplasm and the nucleus 19 4. Up-regulation of ERF19 in response to H2O2 ,the fungal elicitor, chitin, and B. cinerea 20 5. Reduced defense and JA-responsive gene expressions in ERF19 OE lines 20 6. ACC-induced triple response and MeJA-root growth impairment were unchanged in plants over-expressing ERF19 21 7. ERF19 OE lines accumulated more sustained ROS than WT controls after challenge with B. cinerea 21 8. ERF19 OE lines are more sensitive to exogenous paraquat 22 9. ERF19 acts as a functional transcriptional repressor 22 10. Disease phenotypes of ERF19 OE lines inoculated with Pcc, Pst and Hpa 23 11. Temporal and spatial expression patterns of ERF19 promoter. 23 Discussion 24 Arabidopsis over-expression library can be used for screening to reveal phenotypic differences in alterations of plant defense responses 24 Over-expression of ERF19 negatively regulates defense response against B. cinerea 25 Over-expression of ERF19 modulates redox balance in response to stresses 27 Future perspectives 29 1. Generation of ERF19 RNAi lines 29 2. Regulatory role of ERF19 29 3. Identification of ERF19 repression domain 30 4. In search of ERF19 co-repressors 30 Figures 31 Figure 1. B. cinerea symptom phenotypes of lines over-expressing transcription factors 35 Figure 2. B. cinerea disease phenotypes in ERF19 OE lines. 37 Figure 3. Subcellular localization patterns of ERF19-GFP fusion protein expressed in Arabidopsis protoplast 38 Figure 4. Induction of the ERF19 transcripts in WT plants upon chitin, H2O2, or B. cinerea treatment 39 Figure 5. Expression levels of defense marker genes and JA-responsive genes in WT and ERF19 OE plants 41 Figure 6. ERF19 OE lines displayed normal sensitivities to ACC and MeJA 42 Figure 7. ERF19 OE lines showed higher H2O2 and ROS production after B. cinerea inoculation than WT plants 44 Figure 8. ERF19 OE lines displayed increased bleaching of chlorophyll after paraquat treatment 46 Figure 9. Active repression by ERF19 transfected into Arabidopsis protoplasts 47 Fig 10. Disease phenotypes after Pcc SCC1, Pst DC3000 dip-inoculations and Hpa Noco infection in ERF19 OE lines and WT plants. 50 Fig 11. ERF19 promoter activity determined by GUS expression. 51 Table 52 References 53 | |
| dc.language.iso | en | |
| dc.subject | 灰黴病菌 | zh_TW |
| dc.subject | 防禦反應 | zh_TW |
| dc.subject | 乙烯反應轉錄因子 | zh_TW |
| dc.subject | 活性氧物種 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | defense response | en |
| dc.subject | Botrytis cinerea | en |
| dc.subject | Arabidopsis | en |
| dc.subject | ROS | en |
| dc.subject | ERF | en |
| dc.title | 新穎轉錄因子參與阿拉伯芥抵抗灰黴病菌之研究 | zh_TW |
| dc.title | Identification of novel transcription factors involved in the
Arabidopsis defense response to Botrytis cinerea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林讚標,陳昭瑩 | |
| dc.subject.keyword | 灰黴病菌,防禦反應,乙烯反應轉錄因子,活性氧物種,阿拉伯芥, | zh_TW |
| dc.subject.keyword | Botrytis cinerea,defense response,ERF,ROS,Arabidopsis, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
