請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58533完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鼎偉 | |
| dc.contributor.author | Hsiu-Chih Yeh | en |
| dc.contributor.author | 葉修志 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:18:49Z | - |
| dc.date.available | 2019-03-08 | |
| dc.date.copyright | 2014-03-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-09 | |
| dc.identifier.citation | [1] N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties
of partially resonant composites,” Phys. Rev. B, vol. 49, pp. 8479–8482, Mar 1994. [2] G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 462, no. 2074, pp. 3027–3059, 2006. [3] N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express, vol. 15, pp. 6314–6323, May 2007. [4] A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E, vol. 72, p. 016623, July 2005. [5] M. Kerker, “Invisible bodies,” J. Opt. Soc. Am., vol. 65, pp. 376–379, Apr 1975. [6] F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett., vol. 95, p. 067403, Aug 2005. [7] D. A. B. Miller, “On perfect cloaking,” Opt. Express, vol. 14, pp. 12457–12466, Dec 2006. [8] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. [9] U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp. 1777– 1780, 2006. [10] U. Leonhardt, “Notes on conformal invisibility devices,” New Journal of Physics, vol. 8, no. 7, p. 118, 2006. [11] K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization. Kluwer Academic Publishers, Boston, Massachusetts, 1996. [12] Knott and E. F, Radar Cross Section Measurements. Scitech Publishing, Inc, Raleigh, North Carolina, 2006. [13] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett., vol. 99, p. 183901, Oct 2007. [14] A. Alu and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express, vol. 15, pp. 3318– 3332, Mar 2007. [15] M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics and Nanostructures - Fundamentals and Applications, vol. 6, no. 1, pp. 87 – 95, 2008. [16] S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E, vol. 74, p. 036621, Sep 2006. [17] H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett., vol. 99, p. 063903, Aug 2007. [18] Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett., vol. 99, p. 113903, Sep 2007. [19] B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B, vol. 76, p. 121101, Sep 2007. [20] Q. Wu, K. Zhang, F. Meng, and L.-W. Li, “Analytical expression of the electromagnetic field inside the cylindrical metamaterial cloak excited by plane wave,” in Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE, pp. 1–4, 2008. [21] B. Ivsic, Z. Sipus, and J. Bartolic, “Bandwidth of invisible cloak realized with split ring resonators,” in Microwave Techniques, 2008. COMITE 2008. 14th Conference on, pp. 1–4, 2008. [22] Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B, vol. 77, p. 125127, Mar 2008. [23] N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. Kivshar, “Ideal and nonideal invisibility cloaks,” Opt. Express, vol. 16, pp. 21369–21374, Dec 2008. [24] B. Vasić, G. Isić, R. c. v. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B, vol. 79, p. 085103, Feb 2009. [25] T. G. P. Leonhardt, “General relativity in electrical engineering,” New Journal of Physics, 2006. [26] Zienkiewicz, O. Cecil, and R. L. Taylor, The finite element method, vol. 3. London: McGraw-hill, 1977. [27] Y. Zhao, C. Argyropoulos, and Y. Hao, “Dispersive finite-difference time-domain simulation of electromagnetic cloaking devices,” in Antennas and Propagation Conference, 2008. LAPC 2008. Loughborough, pp. 429–432, 2008. [28] P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Applied Physics Letters, vol. 92, no. 3, pp. 031111–031111–3, 2008. [29] N. A. Zharova, I. V. Shadrivov, and Y. S. Kivshar, “Inside-out electromagnetic cloaking,” Opt. Express, vol. 16, pp. 4615–4620, Mar 2008. [30] C. Blanchard, J. A. Porti, B.-I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, “Time domain simulation of electromagneticcloaking structures with tlm method,” Opt. Express, vol. 16, pp. 6461–6470, Apr 2008. [31] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. [32] W. Hardy and L. Whitehead, “Split ring resonator for use in magnetic resonance,” Review of Scientific Instruments, vol. 52, no. 2, pp. 213–216, 1981. [33] W. Cai, U. Chettiar, A. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Applied Physics Letters, vol. 91, no. 11, pp. 111105–111105–3, 2007. [34] W. Cai, U. Chettiar, A. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Applied Physics Letters, vol. 1, no. 11, pp. 224–227, 2007. [35] Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure ofhomogeneous isotropic materials,” Opt. Express, vol. 15, pp. 11133–11141, Sep 2007. [36] B.-I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A, vol. 79, p. 023806, Feb 2009. [37] S. Xi, H. Chen, B. Zhang, B.-I. Wu, and J. A. Kong, “Route to low-scattering cylindrical cloaks with finite permittivity and permeability,” Phys. Rev. B, vol. 79, p. 155122, Apr 2009. [38] Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” Journal of Physics D: Applied Physics, vol. 44, no. 18, p. 185102, 2011. [39] M. Ribeiro and C. Paiva, “Invisibility cloaks and the equivalence principle for electromagnetics,” in Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE, pp. 1–4, 2008. [40] D.-H. Kwon and D. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Applied Physics Letters, vol. 92, no. 1, pp. 013505–013505–3, 2008. [41] W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” Journal of Physics D: Applied Physics, vol. 41, no. 8, p. 085504, 2008. [42] A. Diatta, A. Nicolet, S. Guenneau, and F. Zolla, “Tessellated and stellated invisibility,” Opt. Express, vol. 17, pp. 13389–13394, Aug 2009. [43] W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New Journal of Physics, vol. 10, no. 4, p. 043040, 2008. [44] M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett., vol. 99, p. 233901, Dec 2007. [45] G. Isic, R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, “Radiation and scattering from imperfect cylindrical electromagnetic cloaks,” Opt. Express, vol. 16, pp. 1413–1422, Feb 2008. [46] L. Huang, D. Zhou, J. Wang, Z. Li, X. Chen, and W. Lu, “Generalized transformation for nonmagnetic invisibility cloak with minimized scattering,” J. Opt. Soc. Am. B, vol. 28, pp. 922–928, Apr 2011. [47] P. Collins and J. McGuirk, “A novel methodology for deriving improved material parameter sets for simplified cylindrical cloaks,” Journal of Optics A: Pure and Applied Optics, vol. 11, no. 1, p. 015104, 2009. [48] L.-W. Cai, “Optimizing imperfect cloaks to perfection,” The Journal of the Acoustical Society of America, vol. 132, no. 4, pp. 2923–2931, 2012. [49] J. Zhang, Y. Luo, and N. A. Mortensen, “Minimizing the scattering of a nonmagnetic cloak,” Applied Physics Letters, vol. 96, no. 11, 2010. [50] L. Peng, L. Ran, and N. A. Mortensen, “The scattering of a cylindrical invisibility cloak: reduced parameters and optimization,” Journal of Physics D: Applied Physics, vol. 44, no. 13, p. 135101, 2011. [51] McNamara, D. A. C. W. I. Pistorius, and J. A. G., Introduction to the Uniform Geometrical Theory of Diffraction. Artech House, Norwood, Massachusetts, 1990. [52] A. J. Ward and J. B. Pendry., “Refraction and geometry in maxwell’s equations,” Journal of Modern Optics, vol. 43, pp. 773–793, 1996. [53] J.A.Kong, Electromagnetic wave theory. EMW Publish, 2000. [54] A. Grothendieck, Topological vector spaces. Gordon and Breach Science Publishers, New York, 1973. [55] E.J.Post, Formal structure of electrdtnamics. New York:Wiley, 1990. [56] D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express, vol. 14, pp. 9794–9804, Oct 2006. [57] P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods. World Scientific, 1990. [58] M. T. E.F. Knott, J.F. Shaefer, Introduction to electrodynamics. Second edition, SciTech Publishing, Inc, Raleigh, NC 27615, 2004. [59] B. Cockburn and C.-W. Shu, “The runge–kutta discontinuous galerkin method for conservation laws v: multidimensional systems,” Journal of Computational Physics, vol. 141, no. 2, pp. 199–224, 1998. [60] T. Belytschko, D. Organ, and Y. Krongauz, “A coupled finite element-element-free galerkin method,” Computational Mechanics, vol. 17, no. 3, pp. 186–195, 1995. [61] M. Yan, Z. Ruan, and M. Qiu, “Scattering characteristics of simplified cylindrical invisibility cloaks,” Opt. Express, vol. 15, pp. 17772–17782, Dec 2007. [62] J. S. McGuirk and P. J. Collins, “Controlling the transmitted field into a cylindrical cloak’s hidden region,” Opt. Express, vol. 16, pp. 17560–17573, Oct 2008. [63] K. Busch, S. Lolkes, R. B. Wehrspohn, and H. Foll, Photonic crystals. Wiley Online Library, 2004. [64] A. H. Aly, “Metallic and superconducting photonic crys-tal,” Journal of Superconductivity and Novel Magnetism, vol. 21, no. 7, pp. 421–425, 2008. [65] M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” Journal of Applied Physics, vol. 83, no. 5, pp. 2377–2383, 1998. [66] J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices. SpringerVerlag Berlin Heidelberg, New York, 2008. [67] S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Computing in Science & Engineering, vol. 3, no. 6, pp. 38–47, 2001. [68] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light. Princeton university press, 2011. [69] S. K. Awasthi and S. P. Ojha, “Wide-angle broadband plate polarizer with 1d photonic crystal,” Progress In Electromagnetics Research, vol. 88, pp. 321–335, 2008. [70] P. Drude, “Zur Elektronentheorie der Metalle,” Annalen der Physik, vol. 306, pp. 566–613, 1900. [71] W. Bade, “Drude-model calculation of dispersion forces. i. general theory,” The Journal of Chemical Physics, vol. 27, p. 1280, 1957. [72] D. J. Griffiths and R. College, Introduction to electrodynamics, vol. 3. prentice Hall Upper Saddle River, NJ, 1999. [73] Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Physical Review E, vol. 67, no. 4, p. 046607, 2003. [74] van de Hulst H C, Light scattering by small particles. New York: Wiley, 1957. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58533 | - |
| dc.description.abstract | 轉換光學已被理論地證實可用來使物體隱形不被電磁場所偵測,但
是所計算出的隱形斗篷材料的結構參數是非均勻、非等向性甚至在邊 界處會出現極值。為了實現隱形斗篷,簡化的結構參數是必要的,然 而簡化參數意味著隱形效能的降低。針對二維圓柱形的隱形斗篷,在 過去文獻中已提出多種結構參數,這些參數的均勻性或等向性取決於 對空間的關係,這個關係決定了被實現的可行性。比較這些已提出的 結構參數,隱形效能和可被實現的可能性是很難兼顧的。 本篇論文設計出一個操作在可見光波段並同時兼顧隱形效能和 可被實現的可能性之隱形斗篷。藉由考慮在邊界處的阻抗匹配提出 一組簡單的簡化參數,並在隱形斗篷內部加上光子晶體結構來減少 能量穿透進入隱形的區域。在研究中,模擬使用套裝軟體COMSOL MutiphysicsR 的有限元素法解馬克思威爾方程式,計算隱形斗篷在TE 波入射所產生的散射場分佈來評估隱形的效能。與文獻中已提出的結 構參數比較中,在近場及遠場條件下分別針對正向散射、反向散射以 及各個方向的散射做了一系列的比較與討論。模擬比較的結果指出我 們的設計在簡單的結構參數下可以達到很好的隱形效果,證實了在可 見光波段可以同時兼顧隱形效能和可被實現的可能性。 | zh_TW |
| dc.description.abstract | Transformation optics has shown taht the ability to cloak an object from
incident electromagnetic radiation is theoretically possible. However, the constitutive parameters dictated by the theory are inhomogeneous, anisotropic, and, in some instances, singular at various locations. In order for a cloak to be practically realized, simplified parameter sets are required. However, the simplified parameters result in a degradation in the cloaking function. Constitutive parameters for simplified two-dimensional cylindrical cloaks have been developed and are divided into two categories based on the spatial dependence which represnets the feasibility of practical implementation. Comparing the proposed simplified parameter in the literature, there is a tradeoff between the performance and the possibility for implementation. In this thesis, we design a simplified invisibility cloak operating in the visible light spectrum giving consideration to both the performance and the possibility for implementation. The design is a combinaiton of the simplified parameter by considering impedance match and the photonic crystal structure. During the course of this study, it was noted that all cloak simulations are performed using finite element method (FEM) based numerical methods. In the comparisons with the proposed parameter under the designed PC structure, we compare forward scattering, backward scattering, and scattering in all directions with far field and near field condition respectively. Simulation results illustrate that our design takes into account both the performance and the possibility for implementation in practical in the visible light spectrum. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:18:49Z (GMT). No. of bitstreams: 1 ntu-103-R00941073-1.pdf: 5738718 bytes, checksum: 78b97b7fcfeb655d2e6d0155e3ad71fa (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝i
中文摘要ii Abstract iii Contents iv List of Figures vi List of Tables ix 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Invisibility Cloak Theory 8 2.1 Transformation Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Space Invariance Of Maxwell's Equation . . . . . . . . . . . . . 11 2.1.2 Computation of Material Characteristic . . . . . . . . . . . . . . 11 2.1.3 Control of Electromagnetic Field . . . . . . . . . . . . . . . . . . 13 2.1.4 Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.5 Transformation Between Cartesian and Polar Coordinates . . . . 16 2.2 Infinitely Long Cylindrical Electromagnetic Cloak . . . . . . . . . . . . 17 2.3 Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Implementation of The Cloak . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Simplified Parameter 27 3.1 Simplified Constraint Equation . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Simplified Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Constraint Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Improved Simplified Parameter . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Designed Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.1 Impedance Match . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.2 Transmitted energy in the hidden region . . . . . . . . . . . . . . 44 3.6 Designed Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Comparisons and Analysis 59 4.1 Forward Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Backward Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Scattering in all directions . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Conclusions 70 References 72 | |
| dc.language.iso | en | |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 隱型斗篷 | zh_TW |
| dc.subject | FEM | en |
| dc.subject | photonic crystals | en |
| dc.subject | invisibility cloak | en |
| dc.title | 具有光子晶體結構之隱形斗篷 | zh_TW |
| dc.title | Invisibility cloak with photonic crystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃建璋,邱奕鵬 | |
| dc.subject.keyword | 光子晶體,隱型斗篷,有限元素法, | zh_TW |
| dc.subject.keyword | photonic crystals,invisibility cloak,FEM, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
