請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey Daniel Ward) | |
| dc.contributor.author | Wei-Jyun Wang | en |
| dc.contributor.author | 王瑋鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:17:31Z | - |
| dc.date.available | 2018-03-08 | |
| dc.date.copyright | 2014-03-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-11 | |
| dc.identifier.citation | 1 Anton A. Kiss, Costin Sorin Bildea, 'A control perspective on process intensification in dividing-wall columns'. Chemical Engineering and Processing, 2011, 50: p.281-292
2 Wright, R.O. and N.J.Elizabeth, 'Fractional apparatus'. 1949. US Patent, 2,471,134 3 Schultz, M. A.; Stewart, D. G.; Harris, J. M.; Rosenblum, S. P.; Shakur, M. S.; O'Brien, D. E., Reduce costs with dividing-wall columns. Chem. Eng. Prog. 2002, 98, (5), 64-71. 4 R.C. Van Diggelen, A.A. Kiss, A.W. Heemink, 'Comparison of control strategies for dividing-wall columns'. Industrial & Engineering Chemistry Research, 2010,49: p.288-307. 5 Mutalib, M. I. A.; Smith, R. Operation and control of dividing wall distillation columns - Part 1: Degrees of freedom and dynamic simulation. Chem. Eng. Res. Des. 1998, 76, 308. 6 Serra, M.; Espuna, A.; Puigjaner, L. Control and optimization of the divided wall column. Chem. Eng. Process. 1999, 38, 549. 7 Serra, M., A. Espuna, and L. Puigjaner, 'Controllability of different multicomponent distillation arrangements'. Ind. Eng. Chem. Res., 2003. 42: p. 1773-1782. 8 Ling, H.; Luyben, W. L. New Control Structure for Divided-Wall Columns. Ind. Eng. Chem. Res. 2009, 48, 6034. 9 Ling, H.; Cai, Z.; Wu, H.; Wang, J.; Shen, B. X. Remixing Control for Divided-Wall Columns. Ind. Eng. Chem. Res. 2011, 50, 12694. 10 Serra, M.; Perrier, M.; Espuna, A.; Puigjaner, L. Analysis of different control possibilities for the divided wall column: feedback diagonal and dynamic matrix control. Comput. Chem. Eng. 2001, 25, 859. 11 Rewagad, R. R.; Kiss, A. A. Dynamic optimization of a dividing-wall column using model predictive control. Chem. Eng. Sci. 2012, 68, 132. 12 Wolff, E. A.; Skogestad, S. Operation of Integrated 3-Product (Petlyuk) Distillation-Columns. Ind. Eng. Chem. Res. 1995, 34, 2094. 13 Halvorsen, I. J.; Skogestad, S. Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements. Ind. Eng. Chem. Res. 2003, 42, 605. 14 Wang, Y. F.; Huang, K. J.; Luan, S. J.; Chen, W.; Wang, S. J.; Wong, D. S. H., Circumventing the Black-Hole Problem in Design and Control of Dividing-Wall Distillation Columns. Ind. Eng. Chem. Res. 2012, 51, 14771. 15 Wang, S. J.; Wong, D. S. H., Controllability and energy efficiency of a high-purity divided wall column. Chem. Eng. Sci. 2007, 62, 1010. 16 Ling, H.; Luyben, W. L. Temperature Control of the BTX Divided-Wall Column. Ind. Eng. Chem. Res. 2010, 49, 189. 17 Kim, K.; Lee, M.; Park, S. Two-Point Temperature Control Structure Selection for Dividing-Wall Distillation Columns. Ind. Eng. Chem. Res. 2012, 51, 15683. 18 Ho, Y. C.; Ward, J. D.; Yu, C. C. Quantifying Potential Energy Savings of Divided Wall Columns Based on Degree of Remixing. Ind. Eng. Chem. Res. 2011, 50, 1473. 19 Chu, K. T.; Cadoret, L.; Yu, C. C.; Ward, J. D. A New Shortcut Design Method and Economic Analysis of Divided Wall Columns. Ind. Eng. Chem. Res. 2011, 50, 9221. 20 Teng-Yun Mao, 'Steady state design of non-ideal divided wall columns systems'. Department of Chemical Engineering College of Engineering National Taiwan University Master Thesis, 2012, 7 21 Chuan-Chen Chao, 'Dynamics and control of divided wall columns'. Department of Chemical Engineering College of Engineering National Taiwan University Master Thesis, 2011, 6 22 Bristol, E. H. On a New Measure of Interaction for Multivariable Process Control. IEEE Trans. Autom. Control 1966, Ac11, 133. 23 Seborg, D. E.; Edgar, T. F.; Mellichamp, D. A. Process dynamics and control; Wiley: New Jersey, 2004. 24 McAvoy, T. J., Interaction Analysis, ISA, Research Triangle Park, NC, 1983 25 Sigurd Skogestad, Ian Postlethwaite, 'Multivariable feedback control'. Wiley: New York, 1996 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58501 | - |
| dc.description.abstract | 跟傳統蒸餾塔序列比較之下,內隔壁式蒸餾塔是具有更高的能源效率與更低設備成本的前瞻性設計。然而,因為內隔壁式蒸餾塔是整合型設計,所以設計與控制上較為困難。直到現在,不同類型的內隔壁式蒸餾塔控制與特性仍未被討論過。所以,此研究主要目的是調查與討論三種不同類型隔板式蒸餾塔的控制:上隔板式蒸餾塔(DWCU)、中隔板式蒸餾塔(DWCM)與下隔板式蒸餾塔(DWCL)。使用線性分析工具,相對增益陣列(RGA)與條件數(CN),來對五種真實多成分系統進行分析。基於分析結果選擇出控制架構進入動態模擬。從動態模擬得到的結果顯示,上隔板式蒸餾塔(DWCU)在這三類型蒸餾塔中控制性最差。下隔板式蒸餾塔(DWCL)在大部分的系統中比中隔板式蒸餾塔(DWCM)具有較高的控制性,但是控制性上的微小差異與其較高的能源消耗使中隔板式蒸餾塔(DWCM)能具有競爭力。在本論文的最後章節中探討三種不同類型隔板式蒸餾塔的溫度控制,結果顯示傳統的溫度控制架構無法給予良好的控制表現。 | zh_TW |
| dc.description.abstract | Compared with conventional distillation columns, the dividing wall column is a promising design with high energy efficiency for separating multi-component mixtures. However, it is more difficult to design and control dividing wall columns because of their integrated designs. Complete study of control of the three types of the columns has never been discussed. Therefore, the main purpose of this work is to investigate the control of three types of dividing wall columns: columns with the dividing wall in the lower (DWCL) middle (DWCM) and upper (DWCU) portions of the column. The relative gain array (RGA) and condition number (CN) for these three column types are calculated for five different multicomponent systems. Based on these results, promising control structures are identified and tested in Aspen Dynamics. The results indicate that DWCU has the worst control performance of the three column types. DWCL outperforms DWCM in most cases, but the difference in controllability is not likely to justify the choice of a column configuration with higher costs. Finally, the temperature control of three types of dividing wall is studied. The results show that conventional temperature control cannot provide good performance in controlling dividing wall columns. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:17:31Z (GMT). No. of bitstreams: 1 ntu-103-R99524075-1.pdf: 2436844 bytes, checksum: 82cc2edb5545479a2f5bf4f4ba3f699e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii List of Figures viii List of Tables xiii 1 Introduction 1 1.1 Preface 1 1.2 Introduction of DWCs 4 1.2.1 DWCLs 4 1.2.2 DWCUs 5 1.2.3 DWCMs 6 1.3 Literature survey 8 1.4 Motivation 11 1.5 Thesis organization 12 2 Steady state design of divided wall columns 14 2.1 Flowsheet of three types of divided wall column 14 2.1.1 DWCL 14 2.1.2 DWCU 15 2.1.3 DWCM 15 2.2 Investigated systems 18 2.2.1 BTE - Benzene, Toluene, Ethyl Benzene system 19 2.2.2 EPB - Ethanol, n-Propanol, n-Butanol system 20 2.2.3 WAA - Water, Acetic anhydride and Acetic acid system 20 2.2.4 AMW - Acetic aldehyde, Methanol and Water 22 3 Control Structure 24 3.1 Control strategies of divided wall columns 24 3.2 Analysis tools 26 3.2.1 Relative gain array (RGA) 26 3.2.2 Condition number (CN) 28 3.3 Results of RGA and CN analysis 29 3.3.1 BTE - Benzene, Toluene, Ethyl Benzene system 30 3.3.2 EPB - Ethanol, n-Propanol, n-Butanol system. (Case 4) 33 3.3.3 WAA - Water, Acetic anhydride and Acetic acid system (Case 5)34 3.3.4 AMW - Acetic aldehyde, Methanol and Water (Case 6) 35 4 Dynamic simulation 36 4.1 Controller tuning 36 4.2 Results of dynamic simulation 39 4.2.1 BTE with equal molar feed composition (Case 1) 41 4.2.2 BTE with feed composition (XB,XT,XE)= (0.2,0.6,0.2) (Case 2) 47 4.2.3 BTE with feed composition (XB,XT,XE)= (0.2,0.2,0.6) (Case3)51 4.2.4 EPB - Ethanol, n-Propanol, n-Butanol system (Case 4) 56 4.2.5 WAA - Water, Acetic anhydride and Acetic acid system (Case5) 64 4.2.6 AMW - Acetic aldehyde, Methanol and Water (Case 6) 68 5 Temperature Control of DWCs 72 5.1 Preface 72 5.2 Sensitivity and RGA analysis 73 5.2.1 BTE with equal molar feed composition 73 5.2.2 EPB – Ethanol, n-Propanol, n-Butanol 78 5.3 Results of dynamic simulation 83 5.3.1 BTE with equal molar feed composition (Case 1) 84 5.3.2 EPB – Ethanol, n-Propanol, n Butanol system (Case 4 ) 86 6 Conclusion 88 Reference 94 | |
| dc.language.iso | en | |
| dc.subject | 溫度控制 | zh_TW |
| dc.subject | 條件數 | zh_TW |
| dc.subject | 相對增益陣列 | zh_TW |
| dc.subject | 控制 | zh_TW |
| dc.subject | 內隔壁式蒸餾塔 | zh_TW |
| dc.subject | Condition Number | en |
| dc.subject | Temperature Control | en |
| dc.subject | Relative Gain Array | en |
| dc.subject | Process control | en |
| dc.subject | Dividing wall column | en |
| dc.title | 三種類型內隔壁式蒸餾塔之動態控制 | zh_TW |
| dc.title | Control of three types of dividing-wall columns | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳誠亮(Cheng-Liang Chen),錢義隆(I-Lung Chien),汪上曉(DAVID SHAN-HILL WONG) | |
| dc.subject.keyword | 內隔壁式蒸餾塔,控制,相對增益陣列,條件數,溫度控制, | zh_TW |
| dc.subject.keyword | Dividing wall column,Process control,Relative Gain Array,Condition Number,Temperature Control, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
