Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周子賓(Tze-Bin Chou)
dc.contributor.authorPo-Hsun Chiangen
dc.contributor.author江柏勳zh_TW
dc.date.accessioned2021-06-16T08:16:27Z-
dc.date.available2019-03-18
dc.date.copyright2014-03-18
dc.date.issued2014
dc.date.submitted2014-02-12
dc.identifier.citation1. Robinson, D.N., and Cooley, L. (1997). Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annual review of cell and developmental biology 13, 147-170.
2. Lin, H., and Spradling, A.C. (1993). Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Developmental biology 159, 140-152.
3. Neuman-Silberberg, F.S., and Schupbach, T. (1993). The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75, 165-174.
4. Gonzalez-Reyes, A., Elliott, H., and St Johnston, D. (1995). Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654-658.
5. Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S., Frigerio, G., Noll, M., and Nussleinvolhard, C. (1988). The Role of Localization of Bicoid Rna in Organizing the Anterior Pattern of the Drosophila Embryo. Embo J 7, 1749-1756.
6. Ephrussi, A., Dickinson, L.K., and Lehmann, R. (1991). Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37-50.
7. Kim-Ha, J., Smith, J.L., and Macdonald, P.M. (1991). oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23-35.
8. Schnorrer, F., Bohmann, K., and Nusslein-Volhard, C. (2000). The molecular motor dynein is involved in targeting Swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nat Cell Biol 2, 185-190.
9. Roth, S., Neumansilberberg, F.S., Barcelo, G., and Schupbach, T. (1995). Cornichon and the Egf Receptor Signaling Process Are Necessary for Both Anterior-Posterior and Dorsal-Ventral Pattern-Formation in Drosophila. Cell 81, 967-978.
10. Hachet, O., and Ephrussi, A. (2004). Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428, 959-963.
11. van Eeden, F.J., Palacios, I.M., Petronczki, M., Weston, M.J., and St Johnston, D. (2001). Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole. J Cell Biol 154, 511-523.
12. Palacios, I.M., Gatfield, D., St Johnston, D., and Izaurralde, E. (2004). An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753-757.
13. Clark, A., Meignin, C., and Davis, I. (2007). A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development 134, 1955-1965.
14. Brendza, R.P., Serbus, L.R., Duffy, J.B., and Saxton, W.M. (2000). A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122.
15. Theurkauf, W.E., Smiley, S., Wong, M.L., and Alberts, B.M. (1992). Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923-936.
16. Kim-Ha, J., Kerr, K., and Macdonald, P.M. (1995). Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81, 403-412.
17. Wilsch-Brauninger, M., Schwarz, H., and Nusslein-Volhard, C. (1997). A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 139, 817-829.
18. Wilhelm, J.E., Mansfield, J., Hom-Booher, N., Wang, S., Turck, C.W., Hazelrigg, T., and Vale, R.D. (2000). Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol 148, 427-440.
19. Nakamura, A., Amikura, R., Hanyu, K., and Kobayashi, S. (2001). Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128, 3233-3242.
20. Mansfield, J.H., Wilhelm, J.E., and Hazelrigg, T. (2002). Ypsilon Schachtel, a Drosophila Y-box protein, acts antagonistically to Orb in the oskar mRNA localization and translation pathway. Development 129, 197-209.
21. Wilhelm, J.E., Hilton, M., Amos, Q., and Henzel, W.J. (2003). Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J Cell Biol 163, 1197-1204.
22. Mische, S., Li, M., Serr, M., and Hays, T.S. (2007). Direct observation of regulated ribonucleoprotein transport across the nurse cell/oocyte boundary. Mol Biol Cell 18, 2254-2263.
23. Norvell, A., Debec, A., Finch, D., Gibson, L., and Thoma, B. (2005). Squid is required for efficient posterior localization of oskar mRNA during Drosophila oogenesis. Development genes and evolution 215, 340-349.
24. Markussen, F.H., Michon, A.M., Breitwieser, W., and Ephrussi, A. (1995). Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121, 3723-3732.
25. Breitwieser, W., Markussen, F.H., Horstmann, H., and Ephrussi, A. (1996). Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes & development 10, 2179-2188.
26. Vanzo, N.F., and Ephrussi, A. (2002). Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 129, 3705-3714.
27. Vanzo, N., Oprins, A., Xanthakis, D., Ephrussi, A., and Rabouille, C. (2007). Stimulation of endocytosis and actin dynamics by Oskar polarizes the Drosophila oocyte. Developmental cell 12, 543-555.
28. Chang, C.W., Nashchekin, D., Wheatley, L., Irion, U., Dahlgaard, K., Montague, T.G., Hall, J., and St Johnston, D. (2011). Anterior-posterior axis specification in Drosophila oocytes: identification of novel bicoid and oskar mRNA localization factors. Genetics 188, 883-896.
29. Tanaka, T., and Nakamura, A. (2011). Oskar-induced endocytic activation and actin remodeling for anchorage of the Drosophila germ plasm. Bioarchitecture 1, 122-126.
30. Tanaka, T., and Nakamura, A. (2008). The endocytic pathway acts downstream of Oskar in Drosophila germ plasm assembly. Development 135, 1107-1117.
31. Dollar, G., Struckhoff, E., Michaud, J., and Cohen, R.S. (2002). Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517-526.
32. Tanaka, T., Kato, Y., Matsuda, K., Hanyu-Nakamura, K., and Nakamura, A. (2011). Drosophila Mon2 couples Oskar-induced endocytosis with actin remodeling for cortical anchorage of the germ plasm. Development 138, 2523-2532.
33. Erdelyi, M., Michon, A.M., Guichet, A., Glotzer, J.B., and Ephrussi, A. (1995). Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 377, 524-527.
34. Jankovics, F., Sinka, R., Lukacsovich, T., and Erdelyi, M. (2002). MOESIN crosslinks actin and cell membrane in Drosophila oocytes and is required for OSKAR anchoring. Current biology : CB 12, 2060-2065.
35. Babu, K., Cai, Y., Bahri, S., Yang, X., and Chia, W. (2004). Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes. Genes & development 18, 138-143.
36. Coller, J., and Parker, R. (2004). Eukaryotic mRNA decapping. Annual review of biochemistry 73, 861-890.
37. Fillman, C., and Lykke-Andersen, J. (2005). RNA decapping inside and outside of processing bodies. Current opinion in cell biology 17, 326-331.
38. Lykke-Andersen, J. (2002). Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22, 8114-8121.
39. Parker, R., and Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Molecular cell 25, 635-646.
40. Yu, J.H., Yang, W.H., Gulick, T., Bloch, K.D., and Bloch, D.B. (2005). Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. Rna 11, 1795-1802.
41. Steiger, M., Carr-Schmid, A., Schwartz, D.C., Kiledjian, M., and Parker, R. (2003). Analysis of recombinant yeast decapping enzyme. Rna 9, 231-238.
42. Piccirillo, C., Khanna, R., and Kiledjian, M. (2003). Functional characterization of the mammalian mRNA decapping enzyme hDcp2. Rna 9, 1138-1147.
43. Bessman, M.J., Frick, D.N., and O'Handley, S.F. (1996). The MutT proteins or 'Nudix' hydrolases, a family of versatile, widely distributed, 'housecleaning' enzymes. The Journal of biological chemistry 271, 25059-25062.
44. Mildvan, A.S., Xia, Z., Azurmendi, H.F., Saraswat, V., Legler, P.M., Massiah, M.A., Gabelli, S.B., Bianchet, M.A., Kang, L.W., and Amzel, L.M. (2005). Structures and mechanisms of Nudix hydrolases. Archives of biochemistry and biophysics 433, 129-143.
45. Jinek, M., Eulalio, A., Lingel, A., Helms, S., Conti, E., and Izaurralde, E. (2008). The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. Rna 14, 1991-1998.
46. Fenger-Gron, M., Fillman, C., Norrild, B., and Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Molecular cell 20, 905-915.
47. Xu, J., Yang, J.Y., Niu, Q.W., and Chua, N.H. (2006). Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. The Plant cell 18, 3386-3398.
48. Polesello, C., Delon, I., Valenti, P., Ferrer, P., and Payre, F. (2002). Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol 4, 782-789.
49. Morais-de-Sa, E., Vega-Rioja, A., Trovisco, V., and St Johnston, D. (2013). Oskar is targeted for degradation by the sequential action of Par-1, GSK-3, and the SCF(-)Slimb ubiquitin ligase. Developmental cell 26, 303-314.
50. Lin, M.D., Fan, S.J., Hsu, W.S., and Chou, T.B. (2006). Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Developmental cell 10, 601-613.
51. Ephrussi, A., and Lehmann, R. (1992). Induction of germ cell formation by oskar. Nature 358, 387-392.
52. Bastock, R., and St Johnston, D. (2008). Drosophila oogenesis. Current biology : CB 18, R1082-1087.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58474-
dc.description.abstract中文摘要
在果蠅卵母細胞中,oskar (osk)訊息核醣核酸(mRNA)座落在卵母細胞後端以決定胚胎的體軸 (axial determination) 和極細胞(pole cells)的發育。 osk基因突變會造成果蠅胚胎產生腹節缺失的後端突變性狀(posterior group phenotype)以及極細胞缺失。 osk訊息核醣核酸複合體 (osk mRNP) 在護理細胞(nurse cells)生成,微管運輸蛋白Kinesin協助osk mRNP經微管運送到卵母細胞後端,形成新月狀(crescent)堆積; osk mRNP座落到卵母細胞後端之前,osk mRNA轉譯(translation)是被抑制且直到胚胎發育早期才進行mRNA降解(mRNA degradation)。 現今關於osk mRNP座落的假說中,轉譯後的Osk蛋白質在卵母細胞後端建立一個正向回饋(positive feedback)機制,經由F-肌動蛋白絲狀物(F-actin projections)的產生以固著更多的osk mRNP。
降解體(Processing body)是在細胞質中負責降解、儲存mRNA和抑制mRNA轉譯的蛋白質複合體,去頭蓋蛋白質1 ( decapping protein 1, Dcp1)是降解體的主要成員之一。已知果蠅的去頭蓋蛋白質1 (Drosophila decapping protein 1, dDcp1)是osk mRNP的成員並且參與osk mRNP座落到卵母細胞後端。降解體中的dDcp1出現在osk mRNP上的意義是我們研究的目標。
dDcp1 調控卵發育(oogenesis)中osk mRNP的座落,其他降解體的成員亦可能是osk mRNP座落所需。已知在人類細胞和植物細胞中Dcp1會跟另外兩個Processing body的主要成員:去頭蓋蛋白質2 (decapping protein 2, Dcp2)和人類促進去頭蓋大分子 (Human enhancer of decapping large subunit, Hedls,又稱Ge-1 (Gougerot syndrome)) 形成一個複合體,果蠅中dDcp2和dGe-1參與osk mRNP的座落機制是我們探討的目標。
果蠅dDcp2或dGe-1產生突變時,胚胎會有腹節缺失的後端突變性狀以及造成osk mRNP 在卵母細胞後端累積的新月狀減少或是脫落。 另外在dDcp2突變的卵中,dDcp1和dGe-1蛋白質會有散落或是減少的情況,顯示三者在卵母細胞中有遺傳相互作用 (genetic interaction),且dDcp1和dGe-1在卵母細胞的正常分布需要dDcp2。本論文以共同免疫沉澱(Co-immunoprecipitation)法第一次證實dDcp1、dDcp2A和dGe-1確實可以在卵母細胞中形成一個複合體。
在卵發育(oogenesis)第9~10b時期,dDcp2A和dGe-1分布在卵母細胞的細胞膜內緣(ooctye cortical layer)上,dDcp1-osk mRNP會貼附在dDcp2A和dGe-1旁邊。一個可能的假說是:在卵母細胞cortical layer上的dDcp2A- dGe-1複合體會與dDcp1作用以固著osk mRNP在卵母細胞後端。 根據此假說,原預期大量dDcp2A會促進更多的osk mRNP在卵母細胞後端堆積,然而大量產生dDcp2A在卵母細胞中並沒有明顯累積更多Osk蛋白質在後端,我們懷疑dDcp2A是否無法被大量生成在卵母細胞中。由dDcp2基因劑量(gene dosage)不會顯著影響卵母細胞中dDcp2A蛋白質數量的結果,本論文證實dDcp2A蛋白質數量在卵母細胞中是被嚴格調控。
dDcp2缺失(dDcp2 null)的卵母細胞和護理細胞中,肌動蛋白(actin)發生異常性狀且卵母細胞後端F-肌動蛋白絲狀物(F-actin projections)會消失,顯示dDcp2調控卵母細胞的肌動蛋白。由體外實驗(in vitro) 已知dDcp2A與肌動蛋白絲(actin filaments)有相互作用,且dDcp2A中間片段(dDcp2M)確實可以與肌動蛋白絲有相互作用;本論文進一步做了正反方向的連續截短dDcp2M蛋白質(sequential truncated dDcp2M protein),以尋找dDcp2A可以和肌動蛋白絲結合的最小區域。
為瞭解dDcp2M是否是主要參與肌動蛋白調控的區域,本論文將dDcp2M表現在dDcp2缺失的生殖細胞中,觀察到dDcp2M可以抑制部分肌動蛋白異常性狀,但是不能抑制在護理細胞中的肌動蛋白異常性狀。 結果說明dDcp2M雖然有和肌動蛋白絲的相互作用能力,但是並沒有完整的dDcp2A對肌動蛋白絲調控的功能。
本論文證實dDcp1、dDcp2A和dGe-1確實可以在卵母細胞中形成一個複合體,並且揭示dDcp2A中間片段dDcp2M與肌動蛋白絲有相互作用且可以部分抑制dDcp2 null在卵母細胞的肌動蛋白異常和osk mRNP異常性狀。
zh_TW
dc.description.abstractIn the oocyte of Drosophila melanogaster, the localization of osk messenger RNA (mRNA) is involved in axial determination and pole cell development. The osk mutant embryos show lack of abdominal segmentation which is called posterior group phenotype and lack of pole cells. osk mRNA complexes (osk mRNP) are made in nurse cells. A Microtubule motor protein, Kinesin, mediates transport of osk mRNP by microtubule into the posterior end of the oocyte and osk mRNP are accumulated to form a crescent. Before the localization of osk mRNP to the posterior end of the oocyte, the translation of osk mRNA is repressed, and mRNA degradation is executed until early embryogenesis. Current hypothesis about osk mRNP localization is that after translation derepression, Osk proteins establish a positive feedback mechanism which promotes F-actin projections to anchor more osk mRNP in the posterior end of the oocyte.
Processing body (P body) is a protein complex which is responsible for mRNA degradation, mRNA storage and mRNA translation repression in the cytoplasm. Decapping protein 1 (Dcp1) is a core component of osk mRNP. It is found that Dorsophila Dcp1 (dDcp1) directs the osk mRNP localization to the posterior end of the oocyte. The meaning for presence of dDcp1 on the osk mRNP is a goal of our study.
dDcp1 regulates the osk mRNP localization in the oogenesis and other components of P body may also be required for osk mRNP localization. It is known that in the human cell and plant cell, Dcp1 can interact with other two core components of P body, decapping protein 2 (Dcp2) and Human enhancer of decapping large subunit (Hedls) which is also called Gougerot syndrome (Ge-1) to form a complex. Hence, we wonder whether Dorsophila Dcp2 (dDcp2) and Dorsophila Ge-1 (dGe-1) is involved in the osk mRNP localization.
dDcp2 mutant or dGe-1 mutant embryos show a posterior group phenotype and both mutant oocytes show a reduced or detached crescent of the osk mRNP in the posterior end. In addition, dDcp1 and dGe-1 proteins are scattered or disappeared in the dDcp2 mutant oocyte. It is indicated that they have genetic interactions in the oocyte and the proper localizations of dDcp1 and dGe-1 are required for dDcp2 in the oocyte. In this thesis, the co- immunoprecipitation method first proves that dDcp1, dDcp2A and dGe-1 can form a complex in the oocyte.
At stage 9~10b of the oogenesis, dDcp2A and dGe-1 distribute along the oocyte cortical layer, and dDcp1-osk mRNP juxtaposes the layer of dDcp2A and dGe-1. One possible hypothesis is that dDcp2 and dGe-1 form a complex on the oocyte cortical layer to interact with dDcp1 to anchor the osk mRNP in the posterior end of the oocyte.
Based on this hypothesis, it is expected that the overexpression of dDcp2A can stimulate more accumulation of osk mRNP in the posterior end of the oocyte. However, the overexpression of dDcp2A does not stimulate more accumulation of osk mRNP in the posterior end of the oocyte. We suspect whether dDcp2A cannot be overexpressed in the oocyte. In this thesis, the result shows that dDcp2 gene dosage does not significantly affect the quantity of dDcp2A protein. It is confirmed that the quantity of dDcp2A protein is highly regulated in the oocyte.
dDcp2 null oocyte and nurse cells show abnormal actin pattern. And dDcp2 null mutant results in absent F-actin projections in the posterior end of the oocyte. It is indicated that dDcp2 regulates the actin in the oocyte. Furthermore, dDcp2A can be associated with actin filaments in vitro and the middle region of dDcp2A (dDcp2M) can also be associated with actin filaments. In this thesis, in order to search the minimum region of dDcp2A which can be associated with actin filaments, sequential truncated dDcp2M proteins from 5' to 3' and 3' to 5' are constructed.
To clarify whether dDcp2M is a core region of actin regulation of dDcp2A, dDcp2M is expressed in the dDcp2 null germ cell. The result shows that dDcp2M can partially suppress the abnormal actin pattern in the oocyte but is not sufficient to suppress the abnormal actin pattern in the nurse cell. It reveals that although dDcp2M can be associated with actin filaments, dDcp2M does not have the complete function of actin regulation of dDcp2A.
In summary, this thesis proves that dDcp1, dDcp2A and dGe-1 can form a complex in the oocyte and reveals that the middle of dDcp2A, dDcp2M, can be associated with actin filaments and can partially suppress the abnormal actin pattern and osk mRNP in the dDcp2 null oocyte.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:16:27Z (GMT). No. of bitstreams: 1
ntu-103-R00b43001-1.pdf: 6307174 bytes, checksum: 982533db6dba21b970f27bc16b84fd53 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………….…i
中文摘要……………………………………………………………………………....ii
Abstract……………………………………………………………………………….iii Abbreviations………………………………………………………………………..iv
Introduction 12
1. Drosophila melanogaster oogenesis 12
1.1 Oogenesis 12
1.2 Axis determination 12
2. The transportation and localization of osk mRNP 13
2.1 oskar mRNP 13
2.2 The function of the Osk protein during Drosophila oogenesis 15
2.3 The anchorage machanism of the osk mRNP 15
3. Processing body 17
3.1 Processing body 17
3.2 deadenylation dependent decay 18
3.3 nonsense-mediated decay 18
3.4 ARE-mediated decay 18
3.5 P body components 19
3.6 dDcp1/dDcp2 complex 19
3.7 dGe-1, a scaffold protein that promote decapping activity 20
4. Previous studies of dDcp2 and dGe-1 21
5. The aims of this thesis 25
Materials and Methods 27
Results 41
1. Summary 41
2. The quantity of dDcp2A protein is highly regulated 45
3. dDcp2A, dDcp1 and dGe-1 form a complex in the Drosophila oocyte 46
3.1 transgenic fly used in this research 47
3.2 Observe the pattern of dGe-1-N-V5, dGe-1-M-V5, dGe-1-C-V5 in the oocyte individual. 48
3.3 Observe the pattern of dDcp2NA-cMyc, dDcp2M-cMyc, dDcp2C-cMyc in the oocyte individual. 49
3.4 Co-immunoprecipitation experiments revealed that dDcp1, dDcp2A and dGe-1 could form a complex in the oocyte. 50
4. Function analysis of dDcp2M 53
4.1 dDcp2A actin binding ability can be provided by dDcp2M fragment 53
4.2 dDcp2M could suppress actin clump and osk mRNP localization mutant defects in dDcp2de21 GLC. 55
4.3 Overexpressed dDcp2M-cMyc partially colocalized with Osk protein but did not affect Osk pattern and F-actin projection. 60
Discussion 62
The quantity of dDcp2A is highly regulated 62
dDcp2A、dDcp1 and dGe-1 forms a complex in the Drosophila ovaries 66
dDcp2A are involved in cytoskeleton regulation. 67
Figure 72
Reference 99
dc.language.isozh-TW
dc.subjectdDcp2zh_TW
dc.subjectdGe-1zh_TW
dc.subjectoskzh_TW
dc.subject果蠅卵母細胞zh_TW
dc.subject肌動蛋白zh_TW
dc.subjectdDcp1zh_TW
dc.subjectactinen
dc.subjectdDcp1en
dc.subjectdGe-1en
dc.subjectDrosophila oocyteen
dc.subjectosken
dc.subjectdDcp2en
dc.title果蠅卵母細胞中dDcp1-dDcp2A-dGe-1形成複合體以及dDcp2A影響肌動蛋白行為的功能分析zh_TW
dc.titledDcp1-dDcp2A-dGe-1 form a complex and the analysis of dDcp2A function in F-actin behavior in the Drosophila oocyteen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王致恬(Chih-Tien Wang),柯逢春(Fon-Chun Ke),溫進德(Jin-Der Wen)
dc.subject.keyworddDcp2,dDcp1,dGe-1,果蠅卵母細胞,osk,肌動蛋白,zh_TW
dc.subject.keyworddDcp2,dDcp1,dGe-1,Drosophila oocyte,osk,actin,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2014-02-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved