Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁偉立
dc.contributor.authorTsung-Hsuan Luen
dc.contributor.author呂宗烜zh_TW
dc.date.accessioned2021-06-16T08:16:24Z-
dc.date.available2016-02-26
dc.date.copyright2014-02-26
dc.date.issued2014
dc.date.submitted2014-02-11
dc.identifier.citation王子賓 (2005),「結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究」,國立中央大學應用地質研究所碩士論文,84頁。
尤仁弘(2005),「應用地電阻影像法於壩體潛在滲漏調查之研究」,國立交通大學土木工程系所碩士論文,161頁。
李延恭(1986),「淺談貫入試驗之應用及發展」,地工技術,16,4-13。
姚奕全(2007),「應用地電阻法於崩積層含水特性調查與監測之初探」,國立交通大學土木工程系所碩士論文,138頁。
張振生(2000),「哈盆溪上游伏流水動態研究」,國立臺灣大學森林學研究所碩士論文,148頁。
陳信雄(1989),「水土保持實習手冊」,正中書局,373-394。
陳奕凱(2009),「結合ERT法與大地工程試驗於崩塌地特性調查之研究─以八燕坑崩塌為例」,國立中興大學水土保持學系所碩士論文,97頁。
梅興泰、鄭富書、蔡道賜(2006),「地電阻影像剖面法對非均質地下實體之模擬分析」,技術學刊,21(4),369-382。
黃宏斌(2010),「國有林之崩塌地處理」,臺灣林業,36(1),17-25。
馮正一、陳奕凱、鄭旭涵(2010),「應用ERT法於崩塌地特性調查與水分變化之研究」,中華水土保持學報,41(1),15-26。
楊証傑(2005),「ERT在地工調查應用之問題評析與空間解析度探討」,國立交通大學土木工程系所碩士論文,282頁。
溫彥霖(2008),「簡易貫入試驗與土壤物理性質相關性之研究」,國立臺灣大學森林環境暨資源學研究所碩士論文,64頁。
楊光程(2009),「二維地電阻影像探測之3D 效應研究」,國立交通大學土木工程系所碩士論文,151頁。
劉鎮愷(2008),「現地貫入試驗結果之相關性初步探討」,義守大學土木與生態工程學系碩士論文,115頁。
廖啟岳(2008),「大漢溪流域崩塌地發生特性分析」,國立成功大學地球科學研究所碩士論文,89頁。
歐晉德(1986),「貫入試驗之應用及發展」,地工技術,16,106-110。
蕭仲富、馮正一(2011),「應用邊緣偵測法於地電阻試驗結果之地層分界判釋」,中華水土保持學報,42(2),131-139。
牛島惠輔(1997),「電氣探查法による地下水モニタリング 物理探查」,50(6),632-642。
內田太郎、盛伸行、田村圭司、寺田秀樹、瀧口茂隆、亀江幸二(2009),「場の条件の設定手法が表層崩壞発生箇所の予測に及ぼす影響」,砂防学会誌,62(1),23-31。
Barker, R., and Moore, J. (1998). “The application of time-lapse electrical tomography in groundwater studies.” Leading Edge, 17, 1454-1458.
Carlyle, R. M., Partha, S. R., Troy, R. B., and James, P. M. (2008). “Application of time-lapse ERT imaging to watershed characterization.” Geophysics, 73(3), 7-17.
Dey, A. , and Morrison, H. F. (1979). “Resistivity Modeling for Arbitrarily Two-dimensional Stures.” Geophysical Prospecting, 27,106-136.
Davis, J.L., and Annan, A.P. (1989). “Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy.” Geophys. 37, 531-551.
Dahlin, T., and Leroux, V. (2006). “Time-lapse resistivity investigations for imaging saltwater transport in glaciofluvial deposite.” Environ Geol, 347-358.
Ghosh, D.P. (1971). “The Application of Linear Filter Theory to the Direct Interpretation of Geoelectrical Resistivity Sounding Measurement.” Geophysical Prospecting, 19, 192- 217.
Griffiths, D.H., Barker, R. D. (1993). “Two-dimensional resistivity imaging and modeling in areas of complex geology.” Journal of Applied Geophysics, 29, 211-226.
Hallof, P. G. (1957). “On the interpretation of resistivity and induced polarization measurements.” Thesis, MIT, Cambridge, MA (unpubl.).
Juang, C., Yuan, H., Lee, D., and Lin, P. (2003). ”Simplified Cone Penetration Test-based Method for Evaluating Liquefaction Resistance of Soils.” J. Geotech. Geoenviron. Eng., 129(1), 66-80.
Loke, M. H., and Barker, R. D. (1996). “Rapid Least squares Inversion of Apparent Resistivity Pseudosections.” Geophysical Prospecting, 44, 499-523.
Loke, M. H. (1999). “Time-lapse resistivity imaging inversion”, 5th Meeting of the Environmental and Engineering Society European Section, pp.1-2.
Loke M. H. (2001). “Tutorial: 2-D and 3-D Electrical Imaging Surveys.” Geometrics, Inc.
Loke M.H. (2007). “RES2DINV ver.3.56 .” Geotomo Software, Malaysia.
Mooney, H. M., Orellana, E., Pickett, H., and Tornheim, L, (1966). “A Resistivity Computation Method for Layered Earth Models.” Goephysics, 21, 192-203.
Nishimura, N., Senge, M., and Isozaki, H. (1987). “Estimation of dynamic bearing capacity from the dynamic penetration tests and the influence of soil layer on its tests. (In Japanese, with English abstract.) Res. Bull. Fac. Agric. Gifu Univ., 52, 265-272.
O’nell, D. J., and Merrick, N. P. (1984).“A Digitial Linear Filter for Resistivity Sounding with a Generalized Electrode Ar- ray.” Geophysical Prospecting, 32, 105-123.
Pascal, B., Remi, C., and Christophe, B. (2010). “Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)-A case study in the Cevennes area, France.” Journal of Hydrology, 380, 146-153.
Robertson, P. K. (1990). “Soil classification using the cone penetration test.” Canadian Geotechnical Journal, 27(1), 151-158.
Robertson, P. K., and Wride, C. E. (1998). “Evaluating cyclic liquefaction potential using the cone penetration test.” Canadian Geotechnical Journal, 35(3), 442-459.
Yoshimatsu, H., Kawamitsu, K., Senoo, K., and Hasegawa, S. (2002). “Simplified penetrometer for surface structure survey in hillslopes.” (In Japanese.). Trans. Jpn. Soc. Erosion Control Eng. Tokyo, 392-393.
Yamakawa, Y., Kosugi, K., Masaoka, N., and Mizuyama, T. (2010). “Use of a Combined Penetrometer–Moisture Probe Together with Geophysical Methods to Survey Hydrological Properties of a Natural Slope.” Vadose zone journal, 9(3), 768-779.
Yamakawa, Y., Kosugi, K., Katsura, S., Masaoka, N., and Mizuyama, T. (2011). “Spatial and Temporal Monitoring of Water Content in Weathered Granitic Bedrock Using Electrical Resistivity Imaging.” Vadose zone journal, 11(1), 0-0.
Zhou, W., Beck, B.F., and Stephenson, J. B. (2000). “Reliability of Dipole-Dipole electrical resistivity tomography for defining depth to bedrock in covered karst terranes.” Environmental Geology, 39(7), 760-766.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58473-
dc.description.abstract台灣因地質環境及氣候條件的特殊性,崩塌為坡地常見災害之一,尤其以淺層崩塌發生頻率較高。淺層崩塌定義為基岩面上的土體崩壞現象,因此淺層崩塌的規模及範圍會受到土壤厚度及基岩面位置等地形、地質條件影響,但因地表下未可視,除了從當地肉眼可視之地質環境進行判斷外,進行地下物水文地質分布概況之探測尤為重要。一般調查地表下地層或水文地質環境方法多採鑽探法,或輔以震波法、電氣法等地球物理探測來判斷地表深層的表現,較少研究討論淺層部分。為探討地表淺層之土壤厚度及基岩面位置,本研究使用大地比電阻法(Electrical Resistivity Tomography, ERT)、簡易貫入試驗(Cone Penetration Test, CPT)及鑽探法(Geological Boring),於南投臺大實驗林內茅埔營林區100-20號造林地(一處淺層崩塌樣區及一處新植造林樣區)進行試驗,對該處水文地質狀況、淺層地層分界(基岩面位置)進行探討。並嘗試三種分層方法(基岩面之比電阻值分布範圍、比電阻值及N_h變化曲線、比電阻值垂直變動幅度)施用在樣區資料上,討論其分層效果。
大地比電阻基礎測試中,可依實驗目的或需求進行垂直或水平面向的分段施測,具有機動性;而連續記測方式及時間序列反算法(Time-lapse inversion)可以瞭解大地比電阻儀器之收集資料的穩定性及應用性。
現地結果顯示,淺層崩塌樣區之鑽探岩芯資料證明簡易貫入試驗對於土壤硬度垂直結構表現、土壤厚度、基岩面位置是有效的。使用大地比電阻法能表現出現地的水文地質特性及環境表現,並推測地層分層位置(土壤與岩層界面),透過調整不同電極排列法、電極間距大小或數量可以獲得更好的淺層資料。從淺層崩塌樣區較精細的施測方式,推廣至新植造林樣區較大的施測規模,亦具有良好表現,但大地比電阻法有時會出現不易判斷的情況,若輔助簡易貫入試驗結果,在各個樣區都可以有效地判釋淺層地層分界。
應用大地比電阻法及簡易貫入試驗所作的三種分層結果顯示, “基岩面之比電阻值分布範圍” 可獲得整個樣區之基岩面比電阻值,Wenner法之25-75 %落在34~182 ohm.m,Dipole-Dipole法之25-75 %落在17~57 ohm.m,未來可應用在基岩邊緣偵測法的研究。“比電阻值與N_h值變化曲線” 繪出比電阻值(ρ)與貫入阻抗值(N_h)的垂直深度變化圖,發現當比電阻值隨深度迅速變化而數值線彎曲處,N_h值也會有起伏,而兩者深度誤差幾乎在20 cm內,顯示比電阻值跟N_h值具有相關性;“比電阻值垂直變動幅度” 中兩種電極排列法皆可對樣區進行地層分界,在一號樣區Dipole-Dipole法推測的地層分界與貫入點位置較符合,準確率73 %,淺層崩塌樣區Wenner法推測的地層分界與貫入點位置較符合,準確率56 %。
zh_TW
dc.description.abstractIn Taiwan, slope failure is one of the common sediment disasters due to specific geological condition, environment, and climate. To be more specific, shallow slope failure has higher frequency of occurrence. Shallow slope failure is defined as the collapse of soil layers above bedrock surface. The size and range of a shallow slope failure depend on topographic and geological conditions, such as soil depth and bedrock topography. Since soil and geological conditions are difficult to be observed directly above ground surface, it’s important to detect underground conditions and distribution by direct or indirect methods. In general, people use geological boring, seismic methods or electrical methods to determine the geological stratification. However, shallow stratigraphy is seldom being focused. Therefore, in order to understand the soil-bedrock interface, electrical resistivity tomography(ERT),cone penetration test (CPT), and geological boring were conducted. The above methods were performed in order to explore the hydrogeological conditions and shallow stratigraphic boundary (soil-bedrock interface) at the following two sites in the Nei-Mou-Pu Tract of the Experimental Forest of National Taiwan University ─ a new planting hillslope and a hillslope with shallow slope failure. Three methods were attempted in this research in order to determine the soil-bedrock interface by using ERT and CPT data.
Results show that from the fundamental tests of ERT, vertical or horizontal segmented survey could be conducted in accordance with the purposes or necessities of a research. Therefore, the test could be rather flexible. The continuous measurement method and time-lapse inversion method show the stability and applicability of ERT.
Based on the result of boring cores, it was confirmed that the vertical distribution of soil resistance, soil depth, and the location of soil-bedrock interface could be effectively detected by CPT. Besides, ERT data could reflect the hydrogeological characteristics and soil-bedrock interface at most locations, but it showed inconsistencies at some locations within the sampled sites. Better shallow tomography could be gained by adjusting different electrode array method, electrode spacing and electrode number. At shallow slope failure plot, ERT results were more applicable to this research. As the method being extended to a larger scale at the new planting reforestation plot, ERT results were more applicable respectively. However, the utilization of ERT still has its limits at some plots. Therefore, in addition to ERT data, the combination of ERT and CPT data would improve the effectiveness of soil-bedrock interface detection in every plot.
The method of “Electrical resistivity of soil-bedrock interface” shows the resistivity value of soil-bedrock interface. The Wenner array is in 34~182 ohm.m(25-75%) and the Dipole-Dipole array is in 17~57 ohm.m(25-75%). The method of “Electrical resistivity and penetration resistance’s curve” shows that the values of both electrical resistivity and penetration resistance data significantly changed at the depth around the soil-bedrock interface with an error in 20 cm. Moreover, it indicates that electrical resistivity and penetration resistance rate are greatly correlated. The method of “Vertical variations of electrical resistivity” shows both two types of electrode array are able to detect the soil-bedrock interface, while the Dipole-Dipole array is 73 % accuracy rate at new planting hillslope, and the Wenner array is 56 % accuracy rate at the slope failure hillslope.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:16:24Z (GMT). No. of bitstreams: 1
ntu-103-R97625019-1.pdf: 5605735 bytes, checksum: 33716731efbf341fcd2f1773a24eeb37 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究背景 1
1.2 電探文獻回顧 3
1.2.1 比電阻發展 3
1.2.2 大地比電阻法基本電學原理 5
1.2.3 電極排列方式 7
1.2.4 施測原理 9
1.2.5 接地阻抗 12
1.2.6 探測深度 13
1.3 貫入試驗文獻回顧 14
1.4 研究目的 14
第二章 研究材料與方法 16
2.1 觀測試驗樣區之環境概述 16
2.2 試驗方法設置 19
2.2.1 地表地形測量(雷射測距測高儀) 19
2.2.2 地層剖面探測(大地比電阻法) 19
2.2.3 土壤厚度及垂直結構量測(簡易貫入試驗) 22
2.2.4 單點地質結構資料(鑽探法) 23
2.3 室內分析作業 24
2.3.1 地層剖面資料(大地比電阻資料) 24
2.3.2 土壤厚度及垂直結構資料(貫入資料) 26
2.3.3 Surfer軟體繪圖 27
2.4 地層分層方法 27
2.4.1 基岩面之比電阻值分布範圍 28
2.4.2 比電阻值與Nh值變化曲線 29
2.4.3 比電阻值垂直變動幅度 29
2.5 研究流程圖 31
第三章 比電阻法基礎測試 33
3.1 RES2DINV輸出Surfer 33
3.2 垂直面分段施測 34
3.3 水平面分段施測 36
3.4 連續記測方式 37
3.5 時間序列反算法 38
3.6 討論 41
3.7 小結 42
第四章 現地觀測結果 43
4.1 試驗樣區地形 43
4.2 淺層崩塌樣區結果 44
4.2.1 鑽孔之岩芯資料與Nh值變化比對 44
4.2.2 貫入深度與崩塌破壞面的關聯 47
4.2.3 比電阻法垂直分布與貫入結果 49
4.2.4 基岩面之比電阻值分布範圍 51
4.3 新植造林樣區結果 52
4.3.1 一號試驗樣區結果 52
4.3.2 二號試驗樣區結果 55
4.4 討論 57
4.4.1 歸納各試驗結果 57
4.4.2 電極測法、數量及間距討論 59
4.4.3 與前人研究之比較 62
4.5 小結 64
第五章 地層分層結果 65
5.1 基岩面之比電阻值分布範圍 65
5.2 比電阻值垂直變動幅度 67
5.2.1 一、二號試驗樣區結果 67
5.2.2 淺層崩塌樣區結果 70
5.3 比電阻值與Nh值變化曲線 72
5.3.1 一、二號試驗樣區結果 72
5.3.2 淺層崩塌樣區結果 79
5.4 討論 82
第六章 結論 84
第七章 參考文獻 86
dc.language.isozh-TW
dc.subject大地比電阻法zh_TW
dc.subject簡易貫入試驗zh_TW
dc.subject鑽探zh_TW
dc.subject地層分界zh_TW
dc.subjectCone Penetration Testen
dc.subjectElectrical Resistivity Tomographyen
dc.subjectGeological Boringen
dc.subjectStratigraphic Boundaryen
dc.title應用大地比電阻法於淺層地層分界判釋之研究zh_TW
dc.titleApplying Electrical Resistivity Tomography to Detect Shallow Stratigraphyen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信雄,張振生
dc.subject.keyword簡易貫入試驗,大地比電阻法,鑽探,地層分界,zh_TW
dc.subject.keywordCone Penetration Test,Electrical Resistivity Tomography,Geological Boring,Stratigraphic Boundary,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2014-02-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved