請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58466完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧屬予 | |
| dc.contributor.author | Sung-Ping Chang | en |
| dc.contributor.author | 張頌平 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:16:09Z | - |
| dc.date.available | 2014-02-26 | |
| dc.date.copyright | 2014-02-26 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-12 | |
| dc.identifier.citation | Allmendinger, R. W., Cardozo, N., and Fisher, D. M. (2013). Structural Geology Algo- rithms: Vectors & Tensors. Cambridge University Press, Cambridge, England.
Blair, T. C. and Mcpherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies as- semblages. Journal of Sedimentary Research, 64(3):450--489. Blott, S. J. and Pye, K. (2008). Particle shape: a review and new methods of characteri- zation and classification. Sedimentology, 55(1):31--63. Chen, W. F. and Teng, L. S. (1990). Depositional environment of Quaternary deposits of the Linkou Tableland, Northwestern Taiwan. Proceedings of the Geology Society of China, 33(1):39--63. Costa, J. E. (1983). Paleohydraulic reconstruction of flash-flood peaks from boulder de- posits in the Colorado Front Range. Geological Society of America Bulletin, 94(8): 986--1004. Costa, J. E. (1988). Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. Flood Geomorphology. John Wiley & Sons New York. 1988. p 113-122. 5 fig, 2 tab, 54 ref. Dobkins, J. E. and Folk, R. L. (1970). Shape development on Tahiti-Nui. Journal of Sedimentary Petrology, 40(4):1167--1203. Eriksson, P., Long, D., Bumby, A., Eriksson, K., Simpson, E., Catuneanu, O., Claassen, M., Mtimkulu, M., Mudziri, K., Brumer, J., and van der Neut, M. (2008). Palaeohy- drological data from the c. 2.0 to 1.8 Ga Waterberg Group, South Africa: discussion of a possibly unique Palaeoproterozoic fluvial style. South African Journal of Geology, 111(2-3):281--304. Eriksson, P. G., Bumby, A. J., Brumer, J. J., and van der Neut, M. (2006). Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2-1.9 Ga Waterberg Group, South Africa. Sedimentary Geology, 190(1-4):25--46. Gale, S. J. (1990). The shape of beach gravels. Journal of Sedimentary Petrology, 60(5): 787--789. Hamilton, P. B., Strom, K., and Hoyal, D. C. J. D. (2013). Autogenic incision-backfilling cycles and lobe formation during the growth of alluvial fans with supercritical distribu- taries. Sedimentology, 60(6):1498--1525. Ho, C. S. (1969). Some stratigraphic-structural problems of the Linkou Terrace In northern Taiwan. Proceedings of the Geological Society of China, 12:65--80. Howard, J. L. (1992). An evaluation of shape indices as palaeoenvironmental indicators using quartzite and metavolcanic clasts in Upper Cretaceous to Palaeogene beach, river and submarine fan conglomerates. Sedimentology, 39(3):471--486. Kehew, A. E., Milewski, A., and Soliman, F. (2010). Reconstructing an extreme flood from boulder transport and rainfall-runoff modelling: Wadi Isla, South Sinai, Egypt. Global and Planetary Change, 70(1-4):64--75. Knox, J. C. (1993). Large increases in flood magnitude in response to modest changes in climate. Nature, 361(6411):430--432. Komar, P. D. (1987). Selective gravel entrainment and the empirical-evaluation of flow competence. Sedimentology, 34(6):1165--1176. Koykka, J. (2011). The sedimentation and paleohydrology of the Mesoproterozoic stream deposits in a strike–slip basin (Svinsaga Formation), Telemark, southern Norway. Sed- imentary Geology, 236(3-4):239--255. Krumbein, W. C. (1941). Measurement and geological significance of shape and round- ness of sedimentary particles. Journal of Sedimentary Petrology, 11(2):64--72. Lee, T. Q., Lue, Y. T., Chi, W. R., and Teng, L. S. (2002). Paleomagnetic study of the Kuanyinshan and Tananwan Formations, northern Taiwan. Western Pacific Earth Sci- ence, 2(1):27--36. Lee, W. C. (1961). The petrology and origin of the linkou gravel in Taipei Shin, Taiwan, China. Master of science, Florida State University. Lindsey, D. A., Langer, W. H., and Van Gosen, B. S. (2007). Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA. Sedimentary Geology, 199(3-4):223--232. Love, D. W. and Seager, W. R. (1996). Fluvial fans and related basin deposits of the Mimbres drainage. New Mexico Geology, 18(4):81--92. Malarz, R. (2005). Effects of flood abrasion of the Carpathian alluvial gravels. Catena, 64(1):1--26. McDonnell, M. and Craw, D. (2003). Stratigraphy and provenance of Pliocene greywacke- bearing conglomerate, Cardrona Valley, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 46(3):425--436. Miao, X., Lindsey, D. A., Lai, Z., and Liu, X. (2010). Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA. Sedimentary Geology, 224(1-4):49--53. Miao, X., Lu, H., Li, Z., and Cao, G. (2008). Paleocurrent and fabric analyses of the imbricated fluvial gravel deposits in Huangshui Valley, the northeastern Tibetan Plateau, China. Geomorphology, 99(1-4):433--442. Millane, R. P., Weir, M. I., and Smart, G. M. (2006). Automated analysis of imbrication and flow direction in alluvial sediments using laser-scan data. Journal of Sedimentary Research, 76(7-8):1049--1055. Muresan, A. (2009). Relationship between the bed material size and the amount of meta- morphic and volcanic rocks in hydrographic basins regarding two rivers from Maramures mountains (eastern Carpathians - Romania). Carpathian Journal of Earth and Environmental Sciences, 4(1):19--29. Pierson, T. C. and Scott, K. M. (1985). Downstream dilution of a lahar - transition from debris flow to hyperconcentrated streamflow. Water Resources Research, 21(10):1511- -1524. Powers, M. C. (1953). A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23(2):117--119. Qin, J., Zhong, D. Y., Wang, G. Q., and Ng, S. L. (2012). On characterization of the imbrication of armored gravel surfaces. Geomorphology, 159:116--124. Sklar, L. S., Dietrich, W. E., Foufoula-Georgiou, E., Lashermes, B., and Bellugi, D. (2006). Do gravel bed river size distributions record channel network structure? Water Resources Research, 42(6). Smith, G. A. (1987). The influence of explosive volcanism on fluvial sedimentation - the Deschutes Formation (Neogene) in central Oregon. Journal of Sedimentary Petrology, 57(4):613--629. Stokes, M., Griffiths, J. S., and Mather, A. (2012). Palaeoflood estimates of Pleistocene coarse grained river terrace landforms (Rio Almanzora, SE Spain). Geomorphology, 149:11--26. Sun, T., Paola, C., Parker, G., and Meakin, P. (2002). Fluvial fan deltas: Linking channel processes with large-scale morphodynamics. Water Resources Research, 38(8):10--26. Tien, J. L., Wang, W. S., Chu, C. J., and Chen, C. H. (1994). The depositional time of the Linkou Formation as revealed by the zircon FTD ages for Quaternary volcanic rocks in northern Taiwan. Journal of the Geological Society of China, 37(2):189--214. Tseng, M. H., Liew, P. M., Chi, W. R., and Shih, T. S. (1992). Pollen analysis of the Tananwan Formation, northern Taiwan. Journal of the Geological Society of China, 35(3):247--259. Wang Lee, C. (1969). Petrology and origin of the Linkou Gravel in Taipei, Taiwan, China. Proceedings of the Geological Society of China, 12:49--64. Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R. A., Whitchurch, A. L., and Allen, P. A. (2011). Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply. Geological Society of America Bulletin, 123(7-8):1363--1382. Widera, M. (2010). The morphology of fossil ebbles as a tool for determining their trans- port processes (Kozmin South Lignite Open-cast Pit, Central Poland). Annales Soci- etatis Geologorum Poloniae, 80(3):315--325. Williams, G. P. (1983). Paleohydrological methods and some examples from Swedish fluvial environments .1. cobble and boulder deposits. Geografiska Annaler Series a- Physical Geography, 65(3-4):227--243. Yagishita, K. (1997). Paleocurrent and fabric analyses of fluvial conglomerates of the Paleogene Noda Group, northeast Japan. Sedimentary Geology, 109(1-2):53--71. Zingg, T. (1935). Beitrag zur Schotteranalyse. Schweizerische Mineralogische und Pet- rographische Mitteilungen, 15:39--140. 丹桂之助 (1930) 觀音山之地史的考察之一班 (日文)。台灣地學記事, 第 1 期, 第 65-68 頁。 丹桂之助 (1937) 台北盆地最深鑿井資料及考察 (日文)。台灣地學記事, 第 10-12 期。 丹桂之助 (1939) 台北盆地之地質學的考察 (日文)。矢部教授還曆紀念論文集, 共 5頁。 市川雄一 (1929) 關於臺灣桃園臺地的礫層 (日文)。地學雜誌, 第 41 卷, 第 485 號, 第396-403 頁。 牧山鶴彥 (1935) 觀音山地質圖幅及說明書 (日文)。台灣總督府殖產局出版, 第 691號。 花井重次 (1930) 臺灣桃園臺地之活斷層 (日文)。地理學評論, 第 6 卷, 第 7 號, 第778-789 頁。 何春蓀 (1986) 台灣地質概論: 台灣地質圖幅說明書。經濟部中央地質調查所, 第 2 版,共 164 頁。 張瑞津 (1985) 濁水溪平原地勢分析與地形變遷。國立臺灣師範大學地理研究報告, 第11 期。 張碩芳與蘇品如 (2005) 林口台地第四紀地質調查。經濟部中央地質調查所年報第九十三年度, 第 43-49 頁。 林朝宗 (1981) 林口。五萬分之一臺灣地質圖及說明書。第 3 號。經濟部中央地質調查所。 林朝棨 (1957) 台灣地形。台灣省文獻委員會, 共 424 頁。 林朝棨 (1960) 台北縣志 -卷三 -地理誌。台北縣文獻委員會, 共 126 頁。 林朝棨 (1963) 台灣之第四紀。台灣省文獻委員會, 台灣文獻, 第 14 卷, 第 1-2 期, 共 92頁。 王執明 (1955) 台北西部林口台地一帶之地質。國立台灣大學學士論文, 共71 頁。 石同生 (1990) 電子自旋共振定年法在貝類化石上的研究與應用。國立台灣大學地質研究所碩士論文, 共 180 頁。 胡剛與毛爾威 (1996) 桃園。五萬分之一臺灣地質圖及說明書。第 8 號。經濟部中央地質調查所。 莊釗鳴、陳文福與鄧屬予 (2012) 林口臺地大南灣層的沉積環境。西太平洋地質科學,第 12 卷, 第 2 期, 第 127-156 頁。 邵屏華 (2009) 臺灣中北部更新世地層之對比與分段。經濟部中央地質調查所特刊, 第22 號, 第 115-147 頁。 鄧屬予 (2007) 臺灣第四紀大地構造。經濟部中央地質調查所特刊, 第 18 號, 第 1-24頁。 鄧屬予、宋聖榮、劉志學、蕭丁槐、李錫堤與莊釗鳴 (2008) 林口台地北緣的火山碎屑岩層。西太平洋地質科學, 第 8 卷, 第 43-76 頁。 陳文福 (1989) 林口礫石之地層與沈積學研究。國立台灣大學地質研究所碩士論文, 共74 頁。 陳華玟 (2007) 臺灣第四紀地層架構。經濟部中央地質調查所特刊, 第 18 號, 第 25-49頁。 魏國彥、莊智凱與莊釗鳴 (2009) 林口臺地大南灣層年代再探。經濟部中央地質調查所特刊, 第 22 號, 第 149-164 頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58466 | - |
| dc.description.abstract | 林口臺地礫石層為臺地主要的岩層,分布於更新世的林口層和大南灣層中。過去利用沉積相分析得知礫石的沉積環境,大部分為扇洲的辮狀河環境,少部分為海灘環境。然而前人的組構研究中,缺乏比較不同沉積相的變化,加上測量方法不一,因此本研究重新測量林口臺地礫石層的組構,以了解各沉積相間的組構變化和古水力,得知礫石層的沉積作用。
本研究測量粒徑、覆瓦狀排列、外型與磨圓度,其中粒徑用最大5顆礫石平均計算古水力,覆瓦狀排列、外型和磨圓度則明確規範取樣數量、測量面積與粒徑範圍。將結果依扇頂、上扇、中扇、下扇和海灘的沉積相分類取平均和標準差,作為不同地點間比較之依據。 林口臺地礫石層的古剪應力分布顯示,上游有呈現數個連續性佳的主要河道,而至下游分支成扇狀的數條河道。而各沉積相的組構隨搬運距離增加,粒徑變小而淘選度變佳,覆瓦狀排列方向越集中。磨圓度在上游明顯變佳,下游變化不明顯。海灘與河流的組構比較,海灘的覆瓦狀排列方向較散亂,磨圓度較佳。外型則在各環境中無明顯變化。 林口扇洲的主要河道呈現固定位置,與其他現生沖積扇的河道特徵類似。從上游至下游的水力大小和流體沉積速率遞減,且流體的磨蝕作用集中在上游區域,並因沖積扇沉積的循環模式,導致上游區域沉積河道和後期填充的堆積物,使得粒徑和淘選度在上游呈現變異性大的情形。另外覆瓦狀排列受水力大小和流體沉積速率影響礫石排列方向的散亂情形。海灘的礫石則在磨圓度和覆瓦狀排列能明顯觀察出與辮狀河的差異。 | zh_TW |
| dc.description.abstract | The gravels in the Linkou Tableland, distributes over Pliestocene Linkou Formation and Tanawan Formation. According to facies analysis, the depositional environments of the gravels are considered mostly braided river and a small part of the beach. However, previous texture studies lack comparison with different facies changes and strict measurement methods. Therefore, this study measured textures again to recognize changes for each facies and calculate paleohydrology.
This study measures the grain size, imbrication, particle form and roundness. Grain size measures the 5 largest visible clasts for calculating paleohydrology. Imbrication, shape and roundness especially rule the sampling area, number and range of grain size. The results are separated from five facies to get the mean and standard deviation, including apex, upper fan-delta, middle fan-delta, lower fan-delta and beach. The paleohydrology distribution represents several continued main channels. % at upstream, and main channels branch into few smaller channels whose shape are like fans. With increasing transport distance, grain size decreases, sorting becomes better, and imbrication becomes more uniform. Roundness is better at upstream and no significant change at downstream. Compared with river, beach roundness is better and imbrication is more scattered. %The particle form is without significant change in each facies. The main channels of Linkou fan-delta presents a fixed location. This characteristics is similar to other alluvial fans. From the apex to the lower fan-delta, the flow competence and depositional rate decreases, and abrasion is concentrated in the upstream region. According to alluvial autogenic cycle, upstream region deposits channels and post-fill deposits, making the size and sorting has larger variability in upstream. Imbrication is influenced by flow competence and depositional rate, and gravel beach can observe a significant difference between braided river in roundness and imbrication. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:16:09Z (GMT). No. of bitstreams: 1 ntu-103-R99224210-1.pdf: 32242020 bytes, checksum: 6e49328b58503beaa82aac0d8515c76f (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書..................................... i
致謝............................................. ii 摘要............................................. iii Abstract........................................... iv 目錄............................................. v 圖目............................................. vii 表目............................................. ix 第一章 緒論....................................... 1 1.1 前言..................................... 1 1.2 地質背景.................................. 1 1.3 前人研究.................................. 3 1.4 研究目的.................................. 4 第二章 測量方法..................................... 5 2.1 外型與磨圓度 ............................... 5 2.2 覆瓦狀排列................................. 7 2.3 粒徑..................................... 9 2.4 與前人方法比較.............................. 9 2.5 野外工作流程 ............................... 9 第三章 粒徑....................................... 13 3.1 統計方法.................................. 13 3.2 最大10顆粒徑分布............................ 15 3.3 最大5顆粒徑分布............................. 18 3.4 不同沉積相之變化............................. 21 第四章 覆瓦狀排列................................... 23 4.1 取樣與測量................................. 23 4.2 統計方法.................................. 26 4.3 古水流方向................................. 27 4.4 不同沉積相之變化............................. 29 第五章 外型與磨圓度.................................. 33 5.1 外型及圓度指數與統計.......................... 33 5.2 不同沉積相之變化............................. 35 5.3 前人研究比較 ............................... 38 第六章 礫石層組構之地質意義............................ 41 6.1 林口臺地礫石層之古剪應力 ....................... 41 6.2 林口扇洲之沉積作用 ........................... 44 6.3 辮狀河礫石的搬運作用.......................... 47 第七章 結論....................................... 49 參考文獻.......................................... 51 附錄............................................. 57 附錄A 露頭位置..................................... 57 附錄B 粒徑....................................... 58 附錄C 覆瓦狀排列................................... 72 附錄D 外型與磨圓度.................................. 87 附錄E 剪應力與覆瓦狀排列傾角計算值...................... 106 | |
| dc.language.iso | zh-TW | |
| dc.subject | 組構 | zh_TW |
| dc.subject | 礫石 | zh_TW |
| dc.subject | 林口臺地 | zh_TW |
| dc.subject | 扇洲 | zh_TW |
| dc.subject | Linkou Tableland | en |
| dc.subject | Fan-delta | en |
| dc.subject | Texture | en |
| dc.subject | Gravel | en |
| dc.title | 林口臺地礫石層之組構研究 | zh_TW |
| dc.title | Textural Analyses of the Gravels in the Linkou Tableland | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文山,陳文福,林殿順,吳樂群 | |
| dc.subject.keyword | 林口臺地,礫石,組構,扇洲, | zh_TW |
| dc.subject.keyword | Linkou Tableland,Gravel,Texture,Fan-delta, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 31.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
