請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58458完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林泰元 | |
| dc.contributor.author | Ding-Yen Cheng | en |
| dc.contributor.author | 鄭鼎彥 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:15:51Z | - |
| dc.date.available | 2019-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-12 | |
| dc.identifier.citation | 1. Edington, D. W. and L. T. Yen (1992). 'Is it possible to simultaneously reduce risk factors and excess health care costs?' Am J Health Promot 6(6): 403-406, 409.
2. Edington, D. W., et al. (1997). 'The financial impact of changes in personal health practices.' J Occup Environ Med 39(11): 1037-1046. . 3. Arabadjiev, B., et al. (2012). 'Of mice and men – differential mechanisms of maintaining the undifferentiated state in mESC and hESC.' Biodiscovery. 4. Gazmararian, J. A., et al. (1991). 'Comparing the predictive accuracy of health risk appraisal: the Centers for Disease Control versus Carter Center program.' Am J Public Health 81(10): 1296-1301. 5. Golaszewski, T. and L. T. Yen (1992). 'Demographic characteristics of users of worksite health promotion written materials.' Am J Health Promot 6(5): 359-363. 6. Heldin, C.-H., et al. (2001). Signal transduction mechanisms for members of the TGF-β family. TGF-β and Related Cytokines in Inflammation. S. Breit and S. Wahl, Birkhauser Basel: 11-40. 7. Maniscalco, W. M., et al. (1994). 'Transforming growth factor-beta 1 modulates type II cell fibronectin and surfactant protein C expression.' Am J Physiol 267(5 Pt 1): L569-577. 8. Massague, J. (1990). 'The transforming growth factor-beta family.' Annu Rev Cell Biol 6: 597-641. 9. Massague, J. and Q. Xi (2012). 'TGF-beta control of stem cell differentiation genes.' FEBS Lett 586(14): 1953-1958. 10. Niesler, C. and M. J. Ferguson (2001). TGF-β superfamily cytokines in wound healing. TGF-β and Related Cytokines in Inflammation. S. Breit and S. Wahl, Birkhauser Basel: 173-198. 11. Park, K. S. (2011). 'TGF-beta Family Signaling in Embryonic Stem Cells.' Int J Stem Cells 4(1): 18-23. 12. Wang, J., et al. (1995). 'Cloning and expression of glucocorticoid-induced genes in fetal rat lung fibroblasts. Transforming growth factor-beta 3.' J Biol Chem 270(6): 2722-2728. 13. Xing, Y., et al. (2010). 'Signaling via Alk5 controls the ontogeny of lung Clara cells.' Development 137(5): 825-833. 14. Choi, C. W., et al. (2012). 'Incidence of bronchopulmonary dysplasia in Korea.' J Korean Med Sci 27(8): 914-921. 15. Li, A., et al. (2013). 'Deletion of mesenchymal glucocorticoid receptor attenuates embryonic lung development and abdominal wall closure.' PLoS One 8(5): e63578. 16. Luthje, L., et al. (2009). 'Exercise intolerance and systemic manifestations of pulmonary emphysema in a mouse model.' Respir Res 10: 7. 17. Yee, M., et al. (2006). 'Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development.' Am J Physiol Lung Cell Mol Physiol 291(5): L1101-1111. 18. Costello, L. C. and R. B. Franklin (2013). 'A review of the important central role of altered citrate metabolism during the process of stem cell differentiation.' J Regen Med Tissue Eng 2. 19. Edington, D. W. and L. T. Yen (1992). 'Is it possible to simultaneously reduce risk factors and excess health care costs?' Am J Health Promot 6(6): 403-406, 409. 20. Frank, S., et al. (1996). 'Transforming growth factors beta1, beta2, and beta3 and their receptors are differentially regulated during normal and impaired wound healing.' J Biol Chem 271(17): 10188-10193. 21. Ling, T. Y., et al. (2006). 'Identification of pulmonary Oct-4+ stem/ cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro.' Proc Natl Acad Sci U S A 103(25): 9530-9535. 22. Liu, W. H., et al. (2013). 'Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells.' World J Gastroenterol 19(41): 7032-7041. 23. Madlener, M. (1996). 'Transforming Growth Factors beta1, beta2, and beta3 and Their Receptors Are Differentially Regulated during Normal and Impaired Wound Healing.' Journal of Biological Chemistry 271(17): 10188-10193. 24. Shi, W., et al. (1999). 'TGF-beta3-null mutation does not abrogate fetal lung maturation in vivo by glucocorticoids.' Am J Physiol 277(6 Pt 1): L1205-1213. 25. Zhao, L., et al. (2013). 'Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-beta and BMP signaling.' Am J Physiol Lung Cell Mol Physiol 305(6): L409-418. 26. Mullen, A. C., et al. (2011). 'Master transcription factors determine cell-type-specific responses to TGF-beta signaling.' Cell 147(3): 565-576. 27. Schultz, A. B., et al. (2002). 'Influence of participation in a worksite health-promotion program on disability days.' J Occup Environ Med 44(8): 776-780. 28. Yen, L. T., et al. (1991). 'Associations between health risk appraisal scores and employee medical claims costs in a manufacturing company.' Am J Health Promot 6(1): 46-54. 29. Jung, K., et al. (2012). 'Alveolar epithelial type II cells and their microenvironment in the caveolin-1-deficient mouse.' Anat Rec (Hoboken) 295(2): 196-200. 30. Gao, C., et al. (2011). 'Caveolin-1 siRNA increases the pulmonary microvascular and alveolar epithelial permeability in rats.' J Trauma 70(1): 210-219. 31. Xu, Y., et al. (2010). 'Proinflammatory phenotype and increased caveolin-1 in alveolar macrophages with silenced CFTR mRNA.' PLoS One 5(6): e11004. 32. Barth, K., et al. (2008). 'Characterization of the molecular interaction between caveolin-1 and the P2X receptors 4 and 7 in E10 mouse lung alveolar epithelial cells.' Int J Biochem Cell Biol 40(10): 2230-2239. 33. Barar, J., et al. (2007). 'Cell selective glucocorticoid induction of caveolin-1 and caveolae in differentiating pulmonary alveolar epithelial cell cultures.' Biochem Biophys Res Commun 359(2): 360-366. 34. Barth, K., et al. (2007). 'Caveolin-1 influences P2X7 receptor expression and localization in mouse lung alveolar epithelial cells.' FEBS J 274(12): 3021-3033. 35. Kathuria, H., et al. (2007). 'ERM is expressed by alveolar epithelial cells in adult mouse lung and regulates caveolin-1 transcription in mouse lung epithelial cell lines.' J Cell Biochem 102(1): 13-27. 36. Barth, K., et al. (2005). 'Distribution of caveolin-1 and connexin43 in normal and injured alveolar epithelial R3/1 cells.' Histochem Cell Biol 123(3): 239-247. 37. Guthmann, F., et al. (2004). 'Phenotype of palmitic acid transport and of signalling in alveolar type II cells from E/H-FABP double-knockout mice: contribution of caveolin-1 and PPARgamma.' Biochim Biophys Acta 1636(2-3): 196-204. 38. Fuchs, S., et al. (2003). 'Differentiation of human alveolar epithelial cells in primary culture: morphological characterization and synthesis of caveolin-1 and surfactant protein-C.' Cell Tissue Res 311(1): 31-45. 39. Campbell, L., et al. (1999). 'Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures.' Biochem Biophys Res Commun 262(3): 744-751. 40. Matsuyama, S., et al. (2003). 'SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells.' Cancer Res 63(22): 7791-7798. 41. Hjelmeland, M. D., et al. (2004). 'SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility.' Mol Cancer Ther 3(6): 737-745. 42. Inman, G. J., et al. (2002). 'SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7.' Mol Pharmacol 62(1): 65-74. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58458 | - |
| dc.description.abstract | 背景: 小鼠肺部幹/前驅細胞 ( mouse pulmonary stem / progenitor cells;mPSC ) 是一種具備新生與分化能力的細胞,可以進行肺部的細胞再生甚至式組織再造,所以肺部前驅細胞的生長與分化是細胞進行增生的關鍵,因此常被認為細胞治療的重要來源。近年來發現隨著肺部發育形成肺泡的過程中,體內TGF-β3會增加,而剔除掉TGF-β3的小鼠出生後擇是活不過20個小時。因此推斷在肺部發育過程中TGF-β3訊息路徑極為可能是肺部前驅細胞驅動分化的重要因子。
目標: 探討TGF-β訊息功能對小鼠肺部前驅細胞之特性維持與生長分化之能力的影響以及其相關機轉之研究。 研究方法: 本篇論文利用體外培養小鼠初代肺部前驅細胞,進一步利用細胞分選儀而得到純化的肺部前驅細胞。接著使用TGF-β拮抗劑, LY364947競爭阻斷TGF-β活化肺部前驅細胞中的Smad-3 路徑。並且藉由分析形成之肺部前驅細胞細胞面積及細胞、細胞數目、細胞形態特、以及細胞特性來評估阻斷TGF-β作用時對於肺部前驅細胞所造成之影響。 結果: 我們從小鼠肺部組織萃取出肺部前驅細胞,並且進一步利用細胞分選儀進行分選得到純化的肺部前驅細胞,並進行體外培養之肺部前驅細胞,研究結果發現,隨著時間的增加原本肺部前驅細胞的標記 ( sox2、nanog、oct-4)會下降,且第一形肺泡細胞 ( T1α、Caveolin-1)的標記會上升,且隨著時間的增加,原本的圓形立方柱狀的細胞會延展攤開且細胞面機驟增。若在培養肺部前驅細胞第一天即給予LY364947阻斷TGF-β / smad3的訊息傳遞,我們發現肺部前驅細胞的面積及細胞特性會維持,且細胞數目相較於未加藥組的明顯得增加;此外,未加藥的控制組則會自發性的分化。 結論: 本篇論文發現,若將TGF-β訊息功能受到LY364947的阻斷時,肺部前驅細胞之特性會增維持住並且抑制肺部前驅細胞趨向分化。這代表TGF-β / smad3對於肺部前驅細胞自發性的分化可能扮演著時分重要的角色,也可能成為未來調控肺部前驅細胞分化或增生特性的重要標的。 | zh_TW |
| dc.description.abstract | Background: mouse pulmonary stem / progenitor cells ( mPSC ) is a kind of cell has the ability for self-renewal and differentiation. Due to mPSC is able to generate new-born cells and repopulate tissue, so the growth and development of mPSC is key of the alveolgenesis. Thus, mPSCs have been considered as an attractive source of cell-based therapy. Recently, it’s been reported that alveolar stage occurred with a burst of TGF-β3 elevation. Therefore, TGF-β3 probably is the main regulator of driving mPSCs into alveolar type 1 cells.
Aim: To study the mechanism of TGF-β signaling for the stemness and differentiation potential of mouse pulmonary stem / progenitor cells. Methods: In this thesis, we cultured mPSCs from neonatal lung, and further purified mPSCs through flow cytometer. We used TGF-β receptor inhibitors, LY364947 blocked the activation of smad3 signaling pathway by TGF-β. Then, we analyzed the area and population of mPSCs, cell morphologic of features, and cell expression marker to investigate the effects on mPSCs in the presence / absence of TGF-β signal. Result: We cultured mPSCs through sorting primary culture from neonatal ICR mice lung. The mPSCs underwent spontaneous differentiation. We found that progenitor cells marker ( sox2, nanog, oct-4 ) decreased, and alveolar type 1 cells markers (T1α, Caveolin-1 ) during the spontaneous differentiation. In addition, the cuboidal doom shape colony cells expanded and area per cell increase dramatically. We blocked TGF-β / smad3 signal by LY364947, and found that the cuboidal doom shape, area per cell and the feature of mPSCs maintained. Moreover, the LY364947 group cell number was much more compared to the control group, and the control group underwent spontaneous differentiation. Conclusion: Our results showed that LY364947 once blocking TGF-β / smad3 signaling pathway, the differentiation process was disturbed and the property of the mPSCs maintained. It indicated that TGF-β / smad3 signaling is quite important for mPSCs differentiation, and it could be a great target for regulated mPSCs in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:15:51Z (GMT). No. of bitstreams: 1 ntu-103-R00443017-1.pdf: 2620146 bytes, checksum: ebd43391adb41cf875283a1e15684cbc (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 4
Abstract 5 縮寫表 10 緒論 ( Introduction ) 11 第一節 胞治療契機:傳統類固醇與早產兒肺部發育之影響 12 第二節 幹細胞 13 第三節 肺臟與肺臟幹細胞 13 第四節 TGF-β訊息調節幹細胞與肺部前驅細胞標誌的表現 14 第五節 TGF-β在生理功能上的調節 15 第六節 TGF- β receptor 活化 16 第七節 TGF- β/TGF- β receptor 訊息路徑 18 第八節 研究動機與目的 19 實驗材料與方法( Mateiral and Methods ) 21 第一節 細胞培養 22 第二節 實驗藥品 23 第三節 免疫細胞化學染色法 ( Immunocytochemistry ) 23 第四節 反轉錄酶-聚合酶連鎖反應定量 ( Real-time quantitative PCR ) 23 第五節 細胞存活率分析 ( WST-assay ) 26 第六節 西方墨漬法 ( Western blot ) 26 第七節 流式細胞儀分選 ( Flow cytometry sorting ) 29 第八節 即時影像動態記錄 ( Live dynamic images recording ) 29 第九節 細胞面積分析 ( cell area assay ) 30 第十節 統計分析 ( Statistic analysis ) 30 結果 ( Result ) 31 第一節 肺部前驅細胞自發性的分化成為第一型肺泡細胞 32 第二節 Dexamethasone 透過TGF-β signaling 調節肺部細胞分化 33 第三節 TGF- β 訊息阻斷可能會抑制肺部前驅細胞之分化 36 第四節 TGF- β 訊息阻斷可能會提高肺部前驅細胞之增殖活性 38 討論 ( Discussion ) 39 第一節 Dexamethasone 在臨床上對於肺部促進成熟之情況 40 第二節 Dexamethasone 透過TGF-β之調控來促進肺部發育 40 第三節 阻斷TGF-β訊息功能可能導致肺泡發育不成熟 40 第四節 TGF-β與肺部增生之關係 41 第五節 第一型肺泡細胞在肺部發育時之型態變化 41 第六節 第一型肺泡細胞在肺部發育時之型態變化 42 Figure and legend 43 參考文獻 ( Reference ) 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小鼠肺部前驅細胞 | zh_TW |
| dc.subject | LY364947 | en |
| dc.subject | CAR | en |
| dc.subject | T1α | en |
| dc.subject | TGFβ | en |
| dc.subject | Dexamethasone | en |
| dc.subject | mPSCs | en |
| dc.title | TGF-β誘發小鼠肺部幹/前驅細胞之分化之研究 | zh_TW |
| dc.title | The study of TGF-β-induced differentiation in mouse pulmonary stem/progenitor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹伯年,黃彥華,符文美 | |
| dc.subject.keyword | 小鼠肺部前驅細胞, | zh_TW |
| dc.subject.keyword | mPSCs,CAR,T1α,TGFβ,Dexamethasone,LY364947, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
