請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文貞(Wen-Jen Lin) | |
| dc.contributor.author | Hsin-Hsin Yang | en |
| dc.contributor.author | 楊欣馨 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:15:41Z | - |
| dc.date.available | 2019-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-12 | |
| dc.identifier.citation | Aboutaleb E, Atyabi F, Khoshayand MR, Vatanara AR, Ostad SN, Kobarfard F, et al. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles: Optimization and in vivo evaluation. J Biomed Mater Res Part A. 2013. doi: 10.1002/jbm.a.34890
Agarwal R, Roy K. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition. Ther Deliv. 2013;4(6):705-23. Al-Dubai H, Pittner G, Pittner F, Gabor F. Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system. Nanotechnol Sci Appl. 2011;4:87-94. Alameh M, Dejesus D, Jean M, Darras V, Thibault M, Lavertu M, et al. Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. Int J Nanomedicine. 2012;7:1399-414. Allaert FA. Double-blind, randomized, crossover, controlled clinical trial of NaCl + Chitosan 3% versus NaCl on mild or moderate high blood pressure during the diet and lifestyle improvement period before possible prescription of an antihypertensive treatment. Int Angiol. 2013;32(1):94-101. Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G. Nanotechnology in cancer therapy. J Drug Target. 2013;21(10):904-13. Barenholz Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117-34. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2013. doi: 10.1016/j.addr.2013.11.009. Bordelon H, Biris AS, Sabliov CM, Todd Monroe W. Characterization of Plasmid DNA Location within Chitosan/PLGA/pDNA Nanoparticle Complexes Designed for Gene Delivery. J Nanomaterials. 2011;2011:1-9. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. Dekie L, Toncheva V, Dubruel P, Schacht EH, Barrett L, Seymour LW. Poly-L-glutamic acid derivatives as vectors for gene therapy. J Control Release. 2000;65(1-2):187-202. Delf Loveymi B, Jelvehgari M, Zakeri-Milani P, Valizadeh H. Statistical Optimization of Oral Vancomycin-Eudragit RS Nanoparticles Using Response Surface Methodology. Iran J Pharm Res. 2012;11(4):1001-12. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691-743. Dufay Wojcicki A, Hillaireau H, Nascimento TL, Arpicco S, Taverna M, Ribes S, et al. Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor. J Control Release. 2012;162(3):545-52. Eidi H, Joubert O, Attik G, Duval RE, Bottin MC, Hamouia A, et al. Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. Int J Pharm. 2010;396(1-2):156-65. Elshafeey AH, Kamel AO, Awad GA. Ammonium methacrylate units polymer content and their effect on acyclovir colloidal nanoparticles properties and bioavailability in human volunteers. Colloids Surf B Biointerfaces. 2010;75(2):398-404. Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577-91. Gargouri M, Sapin A, Bouli S, Becuwe P, Merlin JL, Maincent P. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid. Technol Cancer Res Treat. 2009;8(6):433-44. Hanif M, Ranjha NM, Shoaib MH, Mudasser J, Yousuf RI, Khan A, et al. Preparation, characterization and release of verapamil hydrochloride from polycaprolactone/acrylic acid (PCL/AA) hydrogels. Pak J Pharm Sci. 2011;24(4):503-11. Hattori Y, Yamasaku H, Maitani Y. Anionic polymer-coated lipoplex for safe gene delivery into tumor by systemic injection. J Drug Target. 2013;21(7):639-47. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607-12. Hu FQ, Chen WW, Zhao MD, Yuan H, Du YZ. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles. Gene Ther. 2013;20(6):597-606. Jelvehgari M, Barar J, Valizadeh H, Shadrou S, Nokhodchi A. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique. Pharm Dev Technol. 2011;16(6):637-44. Khan SR, Ganguly A, Malabadi RB, Sunwoo HH, Suresh MR. Gene delivery system: a developing arena of study for the new era of medicine. Recent Pat DNA Gene Seq. 2012;6(1):2-9. Kobayashi H, Watanabe R, Choyke PL. Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? Theranostics. 2013;4(1):81-9. Kurita K. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci. 2001;26(9):1921-71. Layek B, Singh J. N-hexanoyl, N-octanoyl and N-decanoyl chitosans: Binding affinity, cell uptake, and transfection. Carbohyd Polym. 2012;89(2):403-10. Li C, Tian H, Rong N, Liu K, Liu F, Zhu Y, et al. Chitosan grafted with macrocyclic polyamines on C-2 and C-6 positions as nonviral gene vectors: preparation, characterization, and in vitro transfection studies. Biomacromolecules. 2011;12(2):298-305. Li X, Min M, Du N, Gu Y, Hode T, Naylor M, et al. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol. 2013. doi: 10.1155/2013/387023. Liem AA, Appleyard MV, O'Neill MA, Hupp TR, Chamberlain MP, Thompson AM. Doxorubicin and vinorelbine act independently via p53 expression and p38 activation respectively in breast cancer cell lines. Br J Cancer. 2003;88(8):1281-4. Ling H, Zhengwei M, Yuying Z, Changyou G. Influences of size of silica particles on the cellular endocytosis,exocytosis and cell activity of HepG2 cells. J Nanosci Lett. 2011;1(1):1-16. Liu W, Zhou QF, Liu JY, Fu JJ, Liu SJ, Jiang GB. Environmental and biological influences on the stability of silver nanoparticles. Chinese Sci Bull. 2011;56(19):2009-15. Lo YL, Sung KH, Chiu CC, Wang LF. Chemically conjugating polyethylenimine with chondroitin sulfate to promote CD44-mediated endocytosis for gene delivery. Mol Pharm. 2013;10(2):664-76. Lopedota A, Trapani A, Cutrignelli A, Chiarantini L, Pantucci E, Curci R, et al. The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur J Pharm Biopharm. 2009;72(3):509-20. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2013;64C:353-67. Maeda H, Greish K, Fang J. The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century. Adv Polym Sci. 2006;193:103-21. Manaspon C, Viravaidya-Pasuwat K, Pimpha N. Preparation of Folate-Conjugated Pluronic F127/Chitosan Core-Shell Nanoparticles Encapsulating Doxorubicin for Breast Cancer Treatment. J Nanomaterials. 2012;2012:1-11. doi: Artn 593878 Doi 10.1155/2012/593878. Mao S, Shuai X, Unger F, Simon M, Bi D, Kissel T. The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm. 2004;281(1-2):45-54. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387-92. Mazzarello GP, Morra L. [Anthracyclines and the heart]. Recenti Prog Med. 1998;89(9):459-64. Missaghi S, Fassihi R. Release characterization of dimenhydrinate from an eroding and swelling matrix: selection of appropriate dissolution apparatus. Int J Pharm. 2005;293(1-2):35-42. doi: 10.1016/j.ijpharm.2004.12.024. Momoh MA, Kenechukwu FC, Adedokun MO, Odo CE, Attama AA. Pharmacodynamics of diclofenac from novel Eudragit entrapped microspheres. Drug Deliv. 2013. doi: 10.3109/10717544.2013.843608. Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim YI, Jeon JY, et al. Chitosan-Based Polyelectrolyte Complexes as Potential Nanoparticulate Carriers: Physicochemical and Biological Characterization. Pharm Res. 2013. doi: 10.1007/s11095-013-1251-9. Ranjbar B, Gill P. Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem Biol Drug Des. 2009;74(2):101-20. Sabuncu AC, Grubbs J, Qian S, Abdel-Fattah TM, Stacey MW, Beskok A. Probing nanoparticle interactions in cell culture media. Colloids Surf B Biointerfaces. 2012;95(0):96-102. Saez A, Guzman M, Molpeceres J, Aberturas MR. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50(3):379-87. Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22(15):2075-80. Schlenk F, Grund S, Fischer D. Recent developments and perspectives on gene therapy using synthetic vectors. Ther Deliv. 2013;4(1):95-113. Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, et al. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J Pharmacol Exp Ther. 2008;324(1):95-102. Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects - an update. J Pharm Pharmacol. 2001;53(8):1047-67. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17(3-4):160-6. Strand SP, Lelu S, Reitan NK, de Lange Davies C, Artursson P, Varum KM. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials. 2010;31(5):975-87. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-70. Tripathi SK, Gupta N, Mahato M, Gupta KC, Kumar P. Selective blocking of primary amines in branched polyethylenimine with biocompatible ligand alleviates cytotoxicity and augments gene delivery efficacy in mammalian cells. Colloids Surf B Biointerfaces. 2013;115C:79-85. Wang B, He C, Tang C, Yin C. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials. 2011;32(20):4630-8. Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14(1):46-60. Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-9. Xiao B, Wang X, Qiu Z, Ma J, Zhou L, Wan Y, et al. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J Biomed Mater Res A. 2013;101(7):1888-97. Yla-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther. 2012;20(10):1831-2. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96(2):273-83. Yousefpour P, Atyabi F, Farahani EV, Sakhtianchi R, Dinarvand R. Polyanionic carbohydrate doxorubicin-dextran nanocomplex as a delivery system for anticancer drugs: in vitro analysis and evaluations. Int J Nanomedicine. 2011;6:1487-96. Zhao X, Yu SB, Wu FL, Mao ZB, Yu CL. Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Release. 2006;112(2):223-8. Zhu XL, Du YZ, Yu RS, Liu P, Shi D, Chen Y, et al. Galactosylated chitosan oligosaccharide nanoparticles for hepatocellular carcinoma cell-targeted delivery of adenosine triphosphate. Int J Mol Sci. 2013;14(8):15755-66. 徐婉貽. 複合式接枝型幾丁聚醣對於人類肝癌細胞轉染效率之研究. 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58453 | - |
| dc.description.abstract | 近年來,奈米技術的發展對製藥工業是一個重大突破。因為在奈米的範圍,材料的物理性會有所改變,例如表面積、電性及磁力。特別是在醫藥方面,又以具有可生物分解性、生物可相容性的高分子聚合物,所形成的奈米載體,在遞送抗癌藥物或基因最具優勢。
在本研究中,主要是以低分子量幾丁聚醣(Chitosan)、去乙醯去聚合幾丁聚醣(DADPCS)以及聚丙烯酸樹酯(EudragitR RS 100)作為遞送藥物或基因的載體。在幾丁聚醣的部分,先進行了去乙醯去聚合的化學反應得到去乙醯去聚合幾丁聚醣(DADPCS),並以傅立葉轉換紅外線光譜儀(FTIR)、膠體滲透層析儀(GPC)確認其化學結構與分子量。再來是利用帶正電荷的聚合物如低分子量幾丁聚醣、去乙醯去聚合幾丁聚醣以及聚丙烯酸樹酯與帶負電荷的質體DNA進行聚電解質複合反應(polyelectrolyte complexation)形成奈米複合體;並針對此奈米複合體進行物性探討,包括粒徑大小分析、圖二色偏光儀、凝膠阻滯分析、安定性試驗、紅血球凝集試驗以及電子顯微鏡影像拍攝,再利用流式細胞儀分析三種高分子聚合物對於綠色螢光基因(pEGFP-N1)轉染至HepG2、MDA-MB-468以及MCF-7三種癌細胞的效率。 另一方面,則再加入硫酸葡聚醣(Dextran Sulfate)一個帶有負電荷的高分子聚合物,搭配聚丙烯酸樹酯(EudragitR RS 100)或去乙醯去聚合幾丁聚醣(DADPCS)兩個帶正電的高分子聚合物,利用聚電解質複合反應(polyelectrolyte complexation)包覆抗癌藥物杜薩魯比辛(Doxorubicin)。並針對其奈米複合體作物性探討,包括粒徑大小分析、安定性試驗、紅血球凝集試驗以及電子顯微鏡影像拍攝,並以連續式多功能微孔盤偵測系統分析藥物的包覆率。另外,也進行了奈米複合體在pH4.0與pH7.4的體外釋放試驗(In vitro drug release study),確認奈米複合體中藥物杜薩魯比辛(Doxorubicin)的釋放模式。最後進行細胞存活率試驗(MTT Assay),了解藥物與含藥奈米複合體對MDA-MB-468和MCF-7的毒殺效果。 在第一部分的實驗結果顯示,低分子量幾丁聚醣、去乙醯去聚合幾丁聚醣以及聚丙烯酸樹酯奈米複合體,在重量比7:1和20:1粒徑大小約在150-350 nm,帶正電,能形成穩定的粒子並且能保護質體DNA,不受核酸分解酶分解;從圖二色光譜可得知,質體DNA在構形上也不會受製備過程影響,最後以流式細胞儀分析轉染試驗,可以發現在HepG2細胞株,其轉染綠色螢光蛋白的能力為去乙醯去聚合幾丁聚醣>低分子量幾丁聚醣>聚丙烯酸樹酯;而在MDA-MB-468和MCF-7其轉染綠色螢光蛋白的能力為聚丙烯酸樹酯>去乙醯去聚合幾丁聚醣>低分子量幾丁聚醣。在第二部分以硫酸葡聚醣、去乙醯去聚合幾丁聚醣以及聚丙烯酸樹酯藉由正負電荷進行包覆杜薩魯比辛,所形成的奈米複合體粒徑約在100至200 nm之間且呈現良好的安定性,在紅血球凝集試驗,奈米複合體帶越強的正電,越容易造成紅血球凝集。在藥物體外釋放方面,在pH 4.0時的奈米複合體的杜薩魯比辛釋放較pH 7.4迅速,而與杜薩魯比辛藥物相比,可以發現所製備的奈米複合體,皆釋放較慢,是緩釋劑型。細胞存活率實驗結果顯示,在MDA-MB-468細胞株,各奈米複合體的毒殺效果並未優於杜薩魯比辛,但在MCF-7細胞株則是呈現相反的結果,MCF-7細胞株對於杜薩魯比辛藥物敏感性較差是由於有P-glycoprotein在細胞膜表面,而帶正電的含藥奈米複合體,可以黏附到帶負電的細胞膜,不受到外排蛋白所影響,能夠確實可以遞送杜薩魯比辛到作用部位,產生毒殺效果。 | zh_TW |
| dc.description.abstract | In the past few years, the development of nanotechnology is a major breakthrough in pharmaceutical industry. Due to nano-scale, the physical characteristic of material was changed including the surface area, electricity and magnetism. Especially in medical application, the biodegradable and biocompatible nanocarriers showed great advantages in cancer or gene therapies.
The main topic of this research was focused on chitosan (LCS), deacetylated depolymerized chitosan (DADPCS) and EudragitR RS 100 (ERS). Chitosan was deacetylated and depolymerized. The chemical structure and molecular weight of DADPCS were confirmed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). We used LCS, DADPCS and ERS polymer to complex with pEGFP plasmid to form nanocomplexes via polyelctrolyte complexation method and the physical properties of nanocomplexes were characterized. Furthermore, we used flow cytometer to evaluate the tranfection efficiency of green fluorescent protein in three cancer cell lines (e.g., HepG2, MDA-MB-468 and MCF-7). On the other hand, we used the DADPCS and ERS polymers to loaded anti-cancer drug doxorubicin (DOX) and dextran sulfate was used as ionic crosslinker. The nanocomplex was formed and the physical properties were characterized. The in vitro drug release from nanocomplex was performed in pH 4.0 and pH 7.4 media. Finally, the cell viability of MDA-MB-468 and MCF-7 was investigated in free drug and nanocomplexes. In the first part, the particle size of three nanocomplexes in weight ratios 7/1 and 20/1 were around 150-350 nm. The nanocomplex had good binding affinity with plasmid DNA and protected plasmid DNA from DNase I degradation. There was no conformation change in plasmid DNA after loaded in nanocomplex. The tranfection efficiency in HepG2 was in the order of DADPCS > LCS > ERS but in MDA-MB-468 and MCF-7 cell lines were ERS > DADPCS > LCS. In the second part, the particle size of DOX-DSNP, DADPCS-DOX-DSNP and DOX-DS-ERSNP were around 100-200 nm. Three nanocomplexes showed good stability at 4oC. The nanocomplex containing more positive charge caused more RBC agglutination. In vitro drug release study, the drug release in pH 4.0 release medium was faster than in pH 7.4 release medium. The drug release from DOX-DSNP, DADPCS-DOX-DSNP and DOX-DS-ERSNP showed much slower than Doxorubicin. In MTT assay, DOX-DSNP, DOX-DS-ERSNP and DADPCS-DOX-DSNP showed lower cell viability than doxorubicin in MDA-MB-468 but oppsite result in MCF-7. Doxorubicin was less sensitive to MCF-7 due to p-glyconprotein in the cancer cell membrane. The positive nanocomplex adhered to negative cell membrane in order to deliver doxorubicin into target cells and cause cell death. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:15:41Z (GMT). No. of bitstreams: 1 ntu-103-R00423007-1.pdf: 12236608 bytes, checksum: a502b04eba6e4328b3b1744029620fa2 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract V 目錄 VII 表目錄 XII 圖目錄 XIV 第一章 緒論 1 一、 基因療法遞送策略及應用 1 (一) 基因療法(Gene therapy) 1 (二) 基因療法的臨床使用狀況和研究 1 (三) 基因的遞送策略(The strategy of gene delivery) 2 (四) 非病毒性載體之帶正電高分子聚合物在基因療法應用 5 二、 奈米劑型在抗癌藥物的遞送策略 6 (一) 被動型標的(passive targeting) 6 (二) 主動型標的(active targeting) 7 三、 杜薩魯比辛(doxorubicin)的臨床使用與研究 8 四、 幾丁聚醣和聚丙烯酸樹酯的研究概況 10 五、 奈米複合體的製備方法(Luo and Wang, 2013) 12 第二章 試劑與材料介紹 13 一、 幾丁聚醣 (Chitosan, CS) 13 二、 聚丙烯酸樹酯 (EudragitR RS-100, ERS) 14 三、 硫酸葡聚醣 (Dextran Sulfate, DS) 15 四、 質體DNA (pEGFP-DNA, pEGFP-N1) 17 五、 杜薩魯比辛 (Doxorubicin) 18 第三章 實驗動機與目的 20 第四章 實驗試劑與儀器 22 一、 藥品 22 二、 細胞實驗材料 24 三、 質體DNA純化實驗 26 四、 儀器 27 五、 耗材 29 六、 藥品溶液及緩衝溶液之配製 30 第五章 實驗方法 31 一、 去乙醯去聚合幾丁聚醣 34 (一) DACS之製備(Kurita, 2001) 34 (二) DADPCS之製備(Mao et al., 2004) 35 二、 結構與物性測定 36 (一) 紅外線分光光譜儀(FT-IR) 36 (二) 分子量評估-膠體滲透層析(GPC) 36 三、 製備包覆DNA之奈米複合體劑型 37 (一) 奈米複合體物性測試 40 (二) 圖二色偏光儀CD(Li et al., 2011) 40 (三) 安定性測試 41 (四) 凝膠阻滯分析 (Gel retardation assay) 42 (五) 奈米複合體的TEM影像 44 (六) 紅血球凝集試驗(Hattori et al., 2013) 44 四、 環狀質體DNA之製備 45 (一) 純化質體DNA(pEGFP-N1) 45 (二) DNA濃度及純度測定 48 五、 細胞實驗 48 (一) 五種細胞株的轉染效果 48 (二) 含質體DNA奈米複合體之細胞轉染實驗 49 (三) 含質體DNA奈米複合體存活率試驗 50 六、 包覆抗癌藥物之奈米複合體的製備 51 (一) 包覆抗癌藥物之DADPCS-DS與ERS-DS 奈米複合體的製備 51 (二) 含藥奈米複合體之物性分析 59 (三) 含藥奈米複合體於4oC的安定性試驗 59 (四) 奈米複合體的TEM影像分析 60 (五) 紅血球凝集試驗(Hattori et al., 2013) 60 (六) 奈米複合體中杜薩魯比辛定量方法 61 (七) 杜薩魯比辛體外釋放實驗藥物含量定量 62 七、 含藥奈米複合體之細胞存活率試驗 67 八、 統計軟體分析 69 第六章 實驗結果 70 一、 去乙醯去聚合幾丁聚醣之合成 70 (一) 低分子量幾丁聚醣(LCS) 70 (二) 去乙醯幾丁聚醣(DACS)之製備 70 (三) 去乙醯去聚合幾丁聚醣(DADPCS)之製備 71 二、 環狀質體DNA之製備 75 三、 包覆質體DNA之奈米複合體 75 (一) 製備包覆質體DNA之奈米複合體相關預試驗 76 (二) 粒徑和表面電位分析 83 (三) 圖二色偏光儀CD 84 (四) 凝膠阻滯分析 86 (五) 安定性試驗 91 (六) 穿透式電子顯微鏡(TEM)影像分析 97 (七) 紅血球凝集試驗 99 四、 細胞實驗 102 (一) 含質體DNA奈米複合體之細胞實驗 102 五、 包覆抗癌藥物之奈米劑型製備 112 (一) 製備包覆抗癌藥物之奈米劑型製備相關預試驗 112 (二) 粒徑和表面電位分析 115 (三) 安定性試驗 117 (四) 穿透式電子顯微鏡(TEM)影像分析 119 (五) 紅血球凝集試驗 121 (六) 奈米複合體中杜薩魯比辛定量試驗 125 (七) 藥物體外釋放實驗 131 六、 含藥奈米複合體之細胞存活率試驗 143 第七章 討論 163 一、 去乙醯化去聚合幾丁聚醣之合成 163 (一) 紅外線分光光譜儀(FT-IR)結構、分子量分析 163 二、 包覆質體DNA之奈米劑型和分析 164 (一) 低分子量幾丁聚醣(LCS)和聚丙烯酸樹酯(ERS)奈米複合體製備預試驗 164 (二) LCS-DNA-NP、DADPCS-DNA-NP以及ERS-DNA-NP物性分析 165 (三) 含質體DNA奈米複合體之細胞轉染實驗及安全性試驗 167 三、 包覆抗癌藥物之奈米劑型和分析 169 (一) 含藥奈米複合體劑型之分析與探討 169 (二) 杜薩魯比辛藥物定量精確度試驗 171 (三) 杜薩魯比辛之體外釋離實驗 172 (四) 藥物奈米劑型之細胞毒殺試驗 174 第八章 結論 177 參考文獻 182 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米複合體 | zh_TW |
| dc.subject | 聚丙烯酸樹酯 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 硫酸葡聚醣 | zh_TW |
| dc.subject | 杜薩魯比辛 | zh_TW |
| dc.subject | 基因遞送 | zh_TW |
| dc.subject | 抗癌藥物遞送 | zh_TW |
| dc.subject | Doxorubicin | en |
| dc.subject | Nanocomplex | en |
| dc.subject | Chitosan | en |
| dc.subject | Eudragit RS 100 | en |
| dc.subject | Dextran sulfate | en |
| dc.subject | Gene and drug delivery | en |
| dc.title | 幾丁聚醣和聚丙烯酸樹酯作為遞送基因及抗癌藥物之奈米複合體的研究 | zh_TW |
| dc.title | Studies of two nano-complex prepared from chitosan and polymethacrylate for gene and anticancer drug delivery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱士娟,胡德民 | |
| dc.subject.keyword | 奈米複合體,聚丙烯酸樹酯,幾丁聚醣,硫酸葡聚醣,杜薩魯比辛,基因遞送,抗癌藥物遞送, | zh_TW |
| dc.subject.keyword | Nanocomplex,Chitosan,Eudragit RS 100,Dextran sulfate,Gene and drug delivery,Doxorubicin, | en |
| dc.relation.page | 188 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 11.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
