Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文貞
dc.contributor.authorMei-Chi Suen
dc.contributor.author蘇玫綺zh_TW
dc.date.accessioned2021-06-16T08:15:28Z-
dc.date.available2019-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-02-13
dc.identifier.citationAl-Deen FN, Selomulya C and Williams T. On designing stable magnetic vectors as carriers for malaria DNA vaccine. Colloids Surf B Biointerfaces. 2013;102:492-503.
Alexis F, Pridgen E, Molnar LK and Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505-15.
Almalik A, Day PJ and Tirelli N. HA-Coated Chitosan Nanoparticles for CD44-Mediated Nucleic Acid Delivery. Macromol Biosci. 2013;13(12):1671-80.
Bae YH and Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198-205.
Bali A, Bali D and Sharma A. An overview of gene therapy in head and neck cancer. Indian J Hum Genet. 2013;19(3):282-90.
Brumbach JH, Lin C, Yockman J, Kim WJ, Blevins KS, Engbersen JF, et al. Mixtures of poly(triethylenetetramine/cystamine bisacrylamide) and poly(triethylenetetramine/cystamine bisacrylamide)-g-poly(ethylene glycol) for improved gene delivery. Bioconjug Chem. 2010;21(10):1753-61.
Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 2006;25(15):2273-84.
Chen CJ, Zhao ZX, Wang JC, Zhao EY, Gao LY, Zhou SF, et al. A comparative study of three ternary complexes prepared in different mixing orders of siRNA/redox-responsive hyperbranched poly (amido amine)/hyaluronic acid. Int J Nanomedicine. 2012;7:3837-49.
Cheng C, Yaffe MB and Sharp PA. A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev. 2006;20(13):1715-20.
Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32(7):1880-9.
Choi KY, Saravanakumar G, Park JH and Park K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces. 2012;99:82-94.
Duceppe N and Tabrizian M. Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials. 2009;30(13):2625-31.
El-Dakdouki MH, Xia J, Zhu DC, Kavunja H, Grieshaber J, O'Reilly S, et al. Assessing the in vivo efficacy of Doxorubicin loaded hyaluronan nanoparticles. ACS Appl Mater Interfaces. 2014;6(1):697-705.
Elmorsy S, Funakoshi T, Sasazawa F, Todoh M, Tadano S and Iwasaki N. Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model. Osteoarthritis Cartilage. 2014;22(1):121-7.
Fernandes HP, Cesar CL and Barjas-Castro Mde L. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter. 2011;33(4):297-301.
Fischer A, Hacein-Bey-Abina S and Cavazzana-Calvo M. Gene therapy of primary T cell immunodeficiencies. Gene. 2013;525(2):170-3.
Ganesh S, Iyer AK, Gattacceca F, Morrissey DV and Amiji MM. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J Control Release. 2013;172(3):699-706.
Gao J, Chen H, Yu Y, Song J, Song H, Su X, et al. Inhibition of hepatocellular carcinoma growth using immunoliposomes for co-delivery of adriamycin and ribonucleotide reductase M2 siRNA. Biomaterials. 2013;34(38):10084-98.
Gariboldi S, Palazzo M, Zanobbio L, Selleri S, Sommariva M, Sfondrini L, et al. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol. 2008;181(3):2103-10.
Gibbs P, Clingan PR, Ganju V, Strickland AH, Wong SS, Tebbutt NC, et al. Hyaluronan-Irinotecan improves progression-free survival in 5-fluorouracil refractory patients with metastatic colorectal cancer: a randomized phase II trial. Cancer Chemother Pharmacol. 2011;67(1):153-63.
Graf C, Gao Q, Schutz I, Noufele CN, Ruan W, Posselt U, et al. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir. 2012;28(20):7598-613.
Hallaj-Nezhadi S, Valizadeh H, Dastmalchi S, Baradaran B, Jalali MB, Dobakhti F, et al. Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-12 and their expression in CT-26 colon carcinoma cells. J Pharm Pharm Sci. 2011;14(2):181-95.
Han C, Li Y, Sun M, Liu C, Ma X, Yang X, et al. Small peptide-modified nanostructured lipid carriers distribution and targeting to EGFR-overexpressing tumor in vivo. Artif Cells Nanomed Biotechnol. 2013. doi: 10.3109/21691401.2013.801848.
Handra-Luca A, Hammel P, Sauvanet A, Lesty C, Ruszniewski P and Couvelard A. EGFR expression in pancreatic adenocarcinoma. Relationship to tumour morphology and cell adhesion proteins. J Clin Pathol. 2013. doi: 10.1136/jclinpath-2013-201662.
Hattori Y, Yamasaku H and Maitani Y. Anionic polymer-coated lipoplex for safe gene delivery into tumor by systemic injection. J Drug Target. 2013;21(7):639-47.
Herbst RS and Shin DM. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer. 2002;94(5):1593-611.
Hornof M, de la Fuente M, Hallikainen M, Tammi RH and Urtti A. Low molecular weight hyaluronan shielding of DNA/PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. J Gene Med. 2008;10(1):70-80.
Hu L, Sun Y and Wu Y. Advances in chitosan-based drug delivery vehicles. Nanoscale. 2013;5(8):3103-11.
Huang M, Khor E and Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004;21(2):344-53.
Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML, et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res. 2008;36(13):4337-51.
Jabr-Milane LS, van Vlerken LE, Yadav S and Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34(7):592-602.
Jiang D, Liang J and Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64.
Jiang G, Park K, Kim J, Kim KS, Oh EJ, Kang H, et al. Hyaluronic acid-polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers. 2008;89(7):635-42.
Katas H, Hussain Z and Awang SA. Bovine Serum Albumin-Loaded Chitosan/Dextran Nanoparticles: Preparation and Evaluation of Ex Vivo Colloidal Stability in Serum. Journal of Nanomaterials. 2013. doi: 10.1155/2013/536291.
Katas H, Raja MA and Lam KL. Development of Chitosan Nanoparticles as a Stable Drug Delivery System for Protein/siRNA. Int J Biomater. 2013. doi: 10.1155/2013/146320.
Kurita K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science. 2001;26(9):1921-71.
Larocca C and Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J. 2011;17(5):359-71.
Lee H and Park TG. Photo-crosslinkable, biomimetic, and thermo-sensitive pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J Biomed Mater Res A. 2009;88(3):797-806.
Li W, Zhan P, De Clercq E, Lou H and Liu X. Current drug research on PEGylation with small molecular agents. Progress in Polymer Science. 2013;38(3-4):421-44.
Liang X, Li X, Chang J, Duan Y and Li Z. Properties and evaluation of quaternized chitosan/lipid cation polymeric liposomes for cancer-targeted gene delivery. Langmuir. 2013;29(27):8683-93.
Liu W, Zhou Q, Liu J, Fu J, Liu S and Jiang G. Environmental and biological influences on the stability of silver nanoparticles. Chin Sci Bull. 2011;56(19):2009-15.
Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421(1):160-9.
Mao S, Shuai X, Unger F, Simon M, Bi D and Kissel T. The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm. 2004;281(1-2):45-54.
Michel R, Pasche S, Textor M and Castner DG. Influence of PEG Architecture on Protein Adsorption and Conformation. Langmuir. 2005;21(26):12327-32.
Milane L, Duan Z and Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm. 2011;8(1):185-203.
Milla P, Dosio F and Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab. 2012;13(1):105-19.
Miller KA, Shao M and Martin-DeLeon PA. Hyalp1 in murine sperm function: evidence for unique and overlapping functions with other reproductive hyaluronidases. J Androl. 2007;28(1):67-76.
Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J. 2011;278(9):1429-43.
Mohit E and Rafati S. Biological delivery approaches for gene therapy: Strategies to potentiate efficacy and enhance specificity. Mol Immunol. 2013;56(4):599-611.
Nguyen TTB, Hein S, Ng C-H and Stevens WF. Molecular stability of chitosan in acid solutions stored at various conditions. J Appl Polym Sci. 2008;107(4):2588-93.
Platt VM and Szoka FC, Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5(4):474-86.
Ponta H, Sherman L and Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33-45.
Qhattal HS and Liu X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharm. 2011;8(4):1233-46.
Racine R and Mummert ME. Hyaluronan Endocytosis: Mechanisms of Uptake and Biological Functions. In: Ceresa B, editor. Molecular Regulation of Endocytosis: In Tech; 2012. p. 377-90.
Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, et al. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J Control Release. 2014;176:54-63.
Rampino A, Borgogna M, Blasi P, Bellich B and Cesaro A. Chitosan nanoparticles: Preparation, size evolution and stability. Int J Pharm. 2013;455(1–2):219-28.
Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1-2):148-58.
Richard I, Thibault M, De Crescenzo G, Buschmann MD and Lavertu M. Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules. 2013;14(6):1732-40.
Saez A, Guzman M, Molpeceres J and Aberturas MR. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50(3):379-87.
Sato T, Ishii T and Okahata Y. In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22(15):2075-80.
Schlesinger TE and Powell CR. Efficacy and tolerability of low molecular weight hyaluronic acid sodium salt 0.2% cream in rosacea. J Drugs Dermatol. 2013;12(6):664-7.
Schweiger C, Pietzonka C, Heverhagen J and Kissel T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm. 2011;408(1-2):130-7.
Shibata H, Yomota C, Kawanishi T and Okuda H. Polyethylene glycol prevents in vitro aggregation of slightly negatively-charged liposomes induced by heparin in the presence of bivalent ions. Biol Pharm Bull. 2012;35(11):2081-7.
Sonia TA and Sharma CP. Chitosan and Its Derivatives for Drug Delivery Perspective. Adv Polym Sci. 2011;243:23-53.
Tada N, Horibe T, Haramoto M, Ohara K, Kohno M and Kawakami K. A single replacement of histidine to arginine in EGFR-lytic hybrid peptide demonstrates the improved anticancer activity. Biochem Biophys Res Commun. 2011;407(2):383-8.
Tiyaboonchai W, Woiszwillo J and Middaugh CR. Formulation and characterization of DNA-polyethylenimine-dextran sulfate nanoparticles. Eur J Pharm Sci. 2003;19(4):191-202.
Tran PA. Nanotechnologies for Cancer Sensing and Treatment. In: Webster TJ, editor. Nanotechnology Enabled In situ Sensors for Monitoring Health: Springer New York; 2011. p. 1-39.
Tront JS, Willis A, Huang Y, Hoffman B and Liebermann DA. Gadd45a levels in human breast cancer are hormone receptor dependent. J Transl Med. 2013;11(131):1-6.
Turley EA, Noble PW and Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem. 2002;277(7):4589-92.
Wang T, Upponi JR and Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm. 2012;427(1):3-20.
Yadav AK, Mishra P and Agrawal GP. An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target. 2008;16(2):91-107.
Yao J, Fan Y, Li Y and Huang L. Strategies on the nuclear-targeted delivery of genes. J Drug Target. 2013;21(10):926-39.
Yewale C, Baradia D, Vhora I, Patil S and Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials. 2013;34(34):8690-707.
Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;33(15):3980-9.
Zamboni WC. Liposomal, Nanoparticle, and Conjugated Formulations of Anticancer Agents. Clin Cancer Res. 2005;11(23):8230-4.
Zoabi N, Golani-Armon A, Zinger A, Reshef M, Yaari Z, Vardi-Oknin D, et al. The Evolution of Tumor-Targeted Drug Delivery: From the EPR Effect to Nanoswimmers. Isr J Chem. 2013;53:719–27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58447-
dc.description.abstract本實驗目的為發展具生物可降解性、無毒性及選擇性標靶癌細胞的基因治療載體,並以幾丁聚醣(chitosan, CS)與具CD44標靶專一性的玻尿酸(hyaluronic acid, HA)作為主要材料。奈米複合體的基因治療效果牽涉到許多因子,包含奈米複合體的製備方法、表面電荷、安定性及聚合物的分子量,本實驗將詳細討論上述這些因子所造成的影響。另外,藉由GE11(2R)胜肽為表皮生長因子受體配體(ligand)的特性,實驗中將合成低分子量玻尿酸-聚乙二醇二胺-GE11(2R) (LHA-PEG-G)接枝聚合物,發展同時具CD44及表皮生長因子受體(epidermal growth factor receptor, EGFR)之新穎性雙重標靶載體。
第一部分實驗為利用去聚電質複合反應(polyelectrolyte complexation)將幾丁聚醣與表現加強型綠色螢光蛋白質體(pEGFP-N1 plasmids)、玻尿酸形成奈米複合體(nanocomplex),並分析其相關物性包括粒子大小、表面電荷、奈米複合體吸附能力、質體DNA的構型(conformation)及細胞轉染效果。
第二部分實驗為合成低分子量玻尿酸-聚乙二醇二胺-GE11(2R)(LHA-PEG-G)接枝聚合物,首先於低分子量玻尿酸(LHA)上修飾不同接枝率的聚乙二醇二胺(PEG diamine)後,再修飾具EGFR標靶之GE11(2R)胜肽,並以使用核磁共振儀(1H-NMR)、傅立葉轉換紅外線光譜儀(FTIR)、膠體滲透層析儀(GPC)及連續式多功能微孔盤偵測系統,確認聚乙二醇接枝率、結構、分子量及GE11(2R)胜肽接枝率。並測試低分子量玻尿酸-聚乙二醇二胺(LHA-PEG)、低分子量玻尿酸-聚乙二醇二胺-GE11(2R)胜肽(LHA-PEG-G)所製成的奈米複合體其物性、安定性、細胞毒性、細胞轉染效果及血液凝集試驗。
實驗結果顯示,使用不同製備方法(A和B)製備奈米複合體,其粒徑、表面電荷無明顯差異。且去乙醯去聚合幾丁聚醣(DADPCS)形成的奈米複合體粒徑明顯小於幾丁聚醣的粒徑。
在MDA-MB-231細胞,由MTT試驗可確定本實驗所使用的CS、DADPCS、LHA和HHA具備低毒性。另外,在許多癌細胞株(例: A549, MDA-MB-231, SKOV-3, MCF-7, HepG2細胞),因DADPCS有較低的分子量,導致DADPCS奈米複合體的轉染效率會大於CS奈米複合體轉染效率。從HA競爭實驗中可間接證明HA奈米複合體藉由CD44受體介導胞攝路徑(CD44 receptor-mediated endocytosis pathway)進入細胞。
由於PEG具有排斥力與電性遮蔽作用,伴隨著PEG接枝率上升,LHA衍生物奈米複合體的粒徑會下降且表面電荷強度逐漸中和。在同時具CD44受體與EGF受體表現的MDA-MB-468和MDA-MB-231細胞轉染實驗中,在含血清中給藥的轉染效果會較無血清給藥的轉染效果高,可能與粒子的安定性及細胞功能(如: 正向調節CD44受體)上升有關。另外,也觀察到在含血清的環境中,低分子量玻尿酸-聚乙二醇-GE11(2R)胜肽(LHA-PEG-G)奈米複合體可提升低分子量玻尿酸(LHA)奈米複合體細胞轉染效率。大部分負電的奈米複合體可避免血球凝集的發生,但正電的奈米複合體則無法避免。結論,低毒性的LHA-PEG-G奈米複合體可作為具標靶CD44受體與EGF受體潛力的基因遞送系統。
zh_TW
dc.description.abstractThe study aims at developing the biodegradable, nontoxic and selectively targeting cancer cell gene delivery system by using chitosan and with CD44 targeting hyaluronic acid as main polymers. The gene delivery efficiency of nanocomplex may be influenced by many factors including preparation method, surface charge, stability and molecular weights of polymers. All of these factors will be discussed in this study. Moreover, because GE11(2R) is acted as a ligand of epidermal growth factor receptor (EGFR), we further synthesized GE11(2R)-conjugated low molecular weight hyaluronic acid-poly(ethylene glycol) bis(amine) (LHA-PEG-G) with CD44 and EGFR dual targeting novel delivery system.
In the first part of the study, the nanocomplex composed of chitosan, pEGFP-N1 plasmid and hyaluronic acid was prepared by polyelectrolyte complexation method. The particle size, surface charge as well as adsorption capacity of nanocomplex, conformation of plasmid, and cell transfection efficiency were investigated.
In the second part of the study, the LHA-PEG-G was synthesized. The LHA was conjugated with the different PEG graft ratios followed by further modification of GE11(2R) peptide as an epidermal growth factor receptor targeting ligand. The graft ratio of PEG, the structure, the molecular weight and the graft ratio of GE11(2R) peptide were analyzed by using nuclear magnetic resonance (1H-NMR), fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and fluorescence spectroscopy, respectively. The nanocomplex of pDNA and LHA-PEG or LHA-PEG-G was prepared and their physicochemical properties, stability, cytotoxity, agglutination, and transfection were determined.
The results showed that the particle size and surface charge of nanocomplex did not have significant difference between preparation methods A and B. Besides, the size of DADPCS nanocomplex was smaller than that of CS nanocomplex.
In MDA-MB-231 cell, the MTT assay confirmed that CS, DADPCS, LHA, HHA were non-toxic materials. Moreover, because of the lower molecular weight of DADPCS than CS, DADPCS nanocomplex transfection efficiency was higher than CS nanocomplex in many cancer cell lines (e.g., A549, MDA-MB-231, SKOV-3, MCF-7, HepG2 cell). The cellular uptake of HA nanocomplex by CD44 receptor-mediated pathway was indirectly proven by HA competition assay.
Due to repulsive and electrical shielding characteristics of PEG, the size of LHA-derived nanocomplexs was decreased and surface charge was neutralized with increasing PEG graft raios.The transfection efficiency of nanocomplex in CD44 and EGF receptor expression cells (e.g., MDA-MB-231 and MDA-MB-468) could be enhanced with FBS due to the increases of particle stability and cell function like up-regulated CD44 receptor. Furthermore, GE11(2R) conjugated LHA-PEG-G nanocomplex had higher transfection efficity than LHA nanocomplex in serum condition. All of the negative charge nanocomplexes can prevent red blood cell aggregation, but the positive charge nanocomplexes not. In conclusion, LHA-PEG-G nanocomplex with low toxicity can serve as a gene delivery system which possessed a specific targeting potential to CD44 and EGF receptors.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:15:28Z (GMT). No. of bitstreams: 1
ntu-103-R00423013-1.pdf: 11333065 bytes, checksum: 61e7289c4b8e371975fe2eb9999ec89f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
目錄 VII
表目錄 XIV
圖目錄 XV
第一章 緒論 1
一、 基因療法 (Gene therapy) 1
(一) 基因載體(gene delivery vectors) 1
二、 幾丁聚醣 (chitosan,CS) 4
三、 奈米劑型之遞送策略 5
(一) 被動型標的(passive targeting) 5
(二) 主動型標的(active targeting) 6
四、 CD44受體 6
五、 玻尿酸 (hyaluronic acid, HA) 7
(一) 玻尿酸基本結構及其體內分佈 7
(二) 玻尿酸受體 8
(三) 玻尿酸的體內生成及降解代謝 8
六、 聚乙二醇修飾(PEGlyation) 11
七、 表皮生長因子受體(epidermal growth factor receptor,EGFR) 12
八、 GE11(2R) 胜肽與表皮生長因子受體 15
第二章 試劑與材料介紹 17
一、 幾丁聚醣 (chitosan,CS) 17
二、 玻尿酸 18
三、 聚乙二醇二胺(Poly(ethylene glycol) bis(amine), PEG diamine) 18
四、 GE11(2R) 胜肽 19
五、 pEGFP-N1 vector 22
第三章 實驗動機與目的 23
第四章 實驗試劑與儀器 24
一、 藥品 24
二、 細胞實驗材料 26
三、 儀器 28
四、 耗材 30
五、 藥品溶液與緩衝溶液製備 30
第五章 實驗方法 32
一、 DADPCS 之製備 36
(一) DACS的製備(Kurita, 2001) 36
(二) DADPCS的製備(Mao et al., 2004) 37
二、 癌細胞表面CD44、EGF受體表現量 39
三、 奈米複合體之製備 41
(一) 製備方法的比較 41
(二) 添加LHA的影響 46
(三) CS分子量及HA分子量的影響 49
四、 奈米複合體物性分析 51
(一) 粒徑和表面電位分析 51
(二) 圓二色光譜分析 51
(三) 凝膠阻滯試驗(Gel retardation assay) 51
(四) 粒徑安定性試驗 52
五、 細胞實驗 52
(一) 奈米複合體材料之細胞毒性 52
(二) 細胞轉染實驗 54
(三) 去乙醯去聚合幾丁聚醣-質體DNA-玻尿酸奈米複合體與玻尿酸競爭實驗 56
六、 LHA衍生物合成與相關奈米複合體之探討 58
(一) LHA-PEG之合成 58
(二) LHA-PEG-GE11(2R) 之合成 61
(三) LHA衍生物奈米複合體製備 65
(四) 穿透式電子顯微鏡(TEM)影像分析 70
(五) 安定性試驗 70
(六) 電泳跑膠實驗 72
(七) LHA、LHA-PEG和LHA-PEG-GE11(2R)奈米複合體之細胞毒性 73
(八) LHA、LHA-PEG和LHA-PEG-GE11(2R)奈米複合體之基因轉染效率 74
(九) 血球凝集試驗(Agglutination assay)(Hattori et al., 2013) 75
(十) 合成產物之結構與物性測定 75
七、 統計分析方法 78
第六章 實驗結果 79
一、 DADPCS 之合成 79
(一) DACS的製備 79
(二) DADPCS 的製備 80
二、 癌細胞表面CD44、EGF受體表現量 81
三、 奈米複合體之製備 85
(一) 製備方法對粒徑與表面電荷的影響 85
(二) 添加LHA對粒徑與表面電荷的影響 87
(三) CS分子量及HA分子量的影響 89
四、 細胞實驗 95
(一) 奈米複合體材料之細胞毒性 95
(二) 細胞轉染實驗 97
(三) 去乙醯去聚合幾丁聚醣-質體DNA-玻尿酸奈米複合體與玻尿酸競爭實驗 104
五、 LHA衍生物合成與相關奈米複合體研究 106
(一) LHA衍生物的合成 106
(二) LHA衍生物奈米複合體的製備 117
(三) 穿透式電子顯微鏡(TEM)影像分析 119
(四) 安定性試驗 121
(五) 電泳跑膠實驗 128
(六) LHA、LHA-PEG和LHA-PEG-GE11(2R)奈米複合體之細胞毒性 132
(七) LHA、LHA-PEG和LHA-PEG-GE11(2R)奈米複合體之基因轉染效率 134
(八) 血球凝集試驗(Agglutination assay) 143
第七章 討論 145
一、 DADPCS 之合成 145
二、 奈米複合體之製備相關物性探討 145
(一) 粒徑與表面電荷 145
(二) 圓二色光譜分析 147
(三) 凝膠阻滯試驗(Gel retardation assay) 147
(四) 4℃安定性試驗 147
三、 細胞實驗 147
(一) 奈米複合體材料之細胞毒性 147
(二) 細胞轉染實驗 148
(三) 去乙醯去聚合幾丁聚醣-質體DNA-玻尿酸奈米複合體與玻尿酸競爭實驗 151
四、 LHA衍生物合成與相關奈米複合體研究 151
(一) LHA衍生物合成探討 151
(二) LHA衍生物奈米複合體製備探討 152
(三) 穿透式電子顯微鏡(TEM)影像分析 154
(四) 相關安定性試驗之討論 155
(五) 相關電泳跑膠實驗探討 158
(六) LHA、LHA-PEG和LHA-PEG-GE11(2R)奈米複合體之細胞毒性 158
(七) LHA、LHA-PEG和LHA-PEG-GE11(2R)奈米複合體之基因轉染效率 158
(八) 血液凝集試驗(Agglutination assay) 161
第八章 結論 162
第九章 參考文獻 165
dc.language.isozh-TW
dc.subject細胞轉染zh_TW
dc.subject奈米複合體zh_TW
dc.subject表皮生長因子受體zh_TW
dc.subjectCD44受體zh_TW
dc.subject胜?配體zh_TW
dc.subject玻尿酸zh_TW
dc.subject幾丁聚醣zh_TW
dc.subjecttransfectionen
dc.subjectchitosanen
dc.subjectpeptide liganden
dc.subjectCD44 receptoren
dc.subjectepidermal growth factor receptoren
dc.subjectnanocomplexen
dc.subjecthyaluronic aciden
dc.title具有CD44受體標靶潛力之玻尿酸基因載體的研究zh_TW
dc.titleStudies of hyaluronic acid related nanocomplex with CD44 targeting potential for gene deliveryen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王靜瓊,王健珍
dc.subject.keyword玻尿酸,幾丁聚醣,胜?配體,CD44受體,表皮生長因子受體,奈米複合體,細胞轉染,zh_TW
dc.subject.keywordhyaluronic acid,chitosan,peptide ligand,CD44 receptor,epidermal growth factor receptor,nanocomplex,transfection,en
dc.relation.page173
dc.rights.note有償授權
dc.date.accepted2014-02-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
11.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved