Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑珍(Shu-Jen, Wang)
dc.contributor.authorChia-Wei Changen
dc.contributor.author張佳瑋zh_TW
dc.date.accessioned2021-06-16T08:14:40Z-
dc.date.available2016-03-18
dc.date.copyright2014-03-18
dc.date.issued2014
dc.date.submitted2014-02-13
dc.identifier.citation王揭晴 (2013) 光強度、氮素與通氣處理對水稻幼苗氮素吸收及同化之影響。國立台灣大學生物資源暨農學院系碩士論文。
高景輝 (2005) 植物生理分析技術。五南圖書出版股份有限公司。
陳懷如 (2009) 水稻葉鞘在抽穗期間由儲存組織轉換成供源組織之分子調控機制。國立台灣大學生物資源暨農學院系博士論文。
鍾萍 (2012) 不同溫度及營養元素對水稻蔗糖轉運蛋白基因表現之影響。國立台灣大學生物資源暨農學院系碩士論文。
戴乃強 (2013) 水稻蔗糖轉運蛋白基因OsSUT4受刻傷誘導表現之調控機制。國立台灣大學生物資源暨農學院系碩士論文。
蕭惠心 (2011) 水稻蔗糖轉運蛋白質基因OsSUT2及OsSUT4之表現分析。國立台灣大學生物資源暨農學院系碩士論文。
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell. 9:1859-1868.
Aloni B, Pashkar T, Karai L (1991) Nitrogen supply influences carbohydrate partitioning of pepper seedlings and transplant development. Journal of the American Society for Horticultural Science 116:995-999.
Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant and Cell Physiology 44:223-232.
Aoki N, Scofield GN, Wang XD, Offler CE, Patrick JW, Furbank RT (2006) Pathway of sugar transport in germinating wheat seeds. Plant Physiology 141:1255-1263.
Araya T, Noguchi K, Terashima I (2010) Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. Journal of Plant Research 123:371-379.
Barker L, Kuhn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB (2000) SUT2, a putative sucrose sensor in sieve elements. The Plant Cell 12:1153-1164.
Boussadia O, Steppe K, Zgallai H, Hadj BE, Braham M, Lemeur R, Labeke MCV (2010) Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Scientia Horticulturae 123:336-342.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72:248-254.
Braun DM, Slewinski TL (2009) Genetic control of carbon partitioning in grasses: roles of Sucrose Transporters and Tie-dyed loci in phloem loading. Plant Physiology 149:71-81.
Bush DR (1993) Proton-coupled sugar and amino acid transporters in plants. Annual Review of Plant Physiology and Plant Molecular Biology 44:513-42.
Cai J, Chen L, Qu H, Lian J, Liu W, Hu Y, Xu G (2012) Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiologiae Plantarum 34:939-946.
Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. The Journal of Biological Chemistry 280:21437-21443.
Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6:71-80.
Chapin III FS, Walter CH, Clarkson DT (1988) Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis. Planta 173:352-366.
Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, Clement G, Chietera G, Leran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus HE, Daniel-Vedele F, Krapp A (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology 23:697–702.
Chen MH, Liu LF, Chen YR, Wu HK, Yu SM (1994) Expression of α-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. The Plant Journal 6:625-636.
Chen HJ, Wang SJ (2008) Molecular regulation of sink-source transition in rice leaf sheaths during the heading period. Acta Physiologiae Plantarum 30:639-649.
Chen JY, Liu SL, Siao W, Wang SJ (2010) Hormone and sugar effects on rice sucrose transporter OsSUT1 expression in germinating embryos. Acta Physiologiae Plantarum 32:749-756.
Chung P, Hsiao HH, Chen HJ, Chang CW, Wang SJ (2013) Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiologiae Plantarum 1861-1664.
DeWitt ND and Sussman MR (1995) Immunocytological localization of an epitope-tagged plasma membrane proton pump (H+-ATPase) in phloem companion cells. The Plant Cell 7:2053-2067.
Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang B, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS (2011) Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiology 157:109-119.
Furbank RT, Scofield GN, Hirose T, Wang XD, Patrick JW, Offler CE (2001) Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Functional Plant Biology 28:1187-1196.
Gawronska H, Deji A, Sakakibara H, Sugiyama T (2003) Hormone-mediated nitrogen signaling in plants: implication of participation of abscissic acid in negative regulation of cytokinin-inducible expression of maize response regulator. Plant Physiology and Biochemistry 41:605-610.
Geiger M, Walch-liu P, Engels C, Harnecker J, Schulze ED, Ludewig F, Sonnewald U, Scheible WR, Stitt M (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant, Cell and Environment 21:253-268.
Gibon Y, Blasing OE, Palacios-Rojas N, Pankovic D, Hendriks JHM, Fisahn J, Hohne M, Gunther M, Stitt M (2004) Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. The Plant Journal 39:847-862.
Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI α-amylase gene promoter. The Plant Cell 7:1879-1891.
Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science 11:610-617.
Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Research 27:297-300.
Hirose T, Imaizumi N, Scofield GN, Furbank RT, Ohsugi R (1997) cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant and Cell Physiology 38:1389-1396.
Hirose T, Zhang Z, Miyao A, Hirochika H, Ohsugi R, Terao T (2010) Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. Journal of Experimental Botany 61:3639-3646
Ho SL, Chao YC, Tong WF, Yu SM (2001) Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiology 125:877-890.
Huang ZA, Jiang DA, YANG Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42: 357-364.
Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annual review of Plant Physiology and Plant Molecular Biology 45:577-607.
Hwang CF, Lin Y, D’Souza T, Cheng CL (1997) Sequences necessary for nitrate-dependent transcription of Arabidopsis nitrate reductase genes. Plant Physiology 11:853-862.
Hwang YS, Karrer EE, Thomas BR, Chen L, Rodriguez RL (1998) Three cis-elements required for rice α-amylase Amy3D expression during sugar starvation. Plant Molecular Biology 36:331-341.
Iwata Y, Kuriyama M , Nakakita M, Kojima H, Onto MA, Nakamura K (1998) Characterization of a calcium-dependent protein kinase of tobacco leaves that is associated with the plasma membrane and is inducible by sucrose. Plant Cell Physiology 39:1176-1183.
Jain M, Tyagi AK, Khurana JP (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biology 6:1-11.
Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H (2013) Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. Plant Cell Physiology 54:1881-1893.
Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. The Plant Cell 18:2733-2748.
Kim DH, Shibato J, Kim DW, Oh MK, Kim MK, Shim IS, Iwahashi H, Masuo Y, Rakwal R (2009) Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species. Physiology and Molecular Biology of Plants 15: 31-41.
Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. The Plant Journal 11:1237-1251.
Kleczewski NM, Herms DA, Bonello P (2012) Nutrient and water availability alter below ground patterns of biomass allocation, carbon partitioning, and ectomycorrhizal abundance in Betula nigra. Trees 26:525-533.
Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:509-540.
Konishi M, Yanagisawa S (2010) Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. The Plant Journal 63:269-282.
Kuhn C (2003) A comparison of the sucrose transporter systems of different plant sprcies. Plant Biology 5:215-232.
Kuhn C (2011) Sucrose transporters and plant development. Transporters and Pumps in Plant Signaling. 225-251.
Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:569-593.
Lancien M, Gadal P, Hodges M (2000) Enzyme redundancy and the importance of 2-Oxoglutarate in higher plant ammonium assimilation. PlantPhysiology 123: 817-824.
Lea PJ, Miflin BJ (1974) Alternative route for nitrogen assimilation in higher plants. Nature 25:614-616.
Lemoine R (2000) Sucrose transporter in plants: update on function and structure. Biochimica et Biophysica Acta 1465: 246-262.
Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593.
Lin YL, Chao YY, Huang WD, Kao CH (2011) Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings. Plant Growth Regulation 64:263-273.
Liseron-Monfils C, Bi YM, Downs GS, Wu W, Signorelli T, Lu G, Chen X, Bondo E, Zhu T, Lukens LN, Colasanti J, Rothstein SJ, Raizada MN (2013) Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs. Plant Signaling and Behavior 8:e26056.
Loppes R, Radoux M (2001) Identification of short promoter regions involved in the transcriptional expression of the nitrate reductase gene in Chlamydomonas reinhardtii. Plant Molecular Biology 45:215-227.
Maas C, Schaal S, Werr W (1990) A feedback control element near the transcription start site of the maize Shrunken gene determines promoter activity. The EMBO Journal 9:3447-3452.
Martinez-Noel G, Nagaraj VJ, Calo G, Wiemken A, Pontis HG (2007) Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. Plant Physiology and Biochemistry 45:410-419.
Matsukura C, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J (2000) Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiology 124: 85-93.
Matt P, Schurr U, Klein D, Krapp A, Stitt M (1998) Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Planta 207:27-41.
Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant, Cell and Environment 24:1119-1137.
Matt P, Krapp A, Haake V, Mock HP, Stitt M (2002) Decrease rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. The Plant Journal 30:663-677.
Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J (1998) Functional dissection of a sugar-repressed α-amylase gene (RAmy1A) promoter in rice embryos. FEBS Letters 423:81-85.
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473-497.
Ngampanya B, Takeda T, Sonoda Y, Narangajavana J, Yamaguchi J (2002) Characterization of OsSUT2 cDNA expressed before flowering stage. Rice Genetics Newsletters 19:48-51.
Nguyen NT, Nakabayashi K, Mohapatra PK, Thompson J, Fujita K (2003) Effect of nitrogen deficiency on biomass production, photosynthesis, carbon partitioning, and nitrogen nutrition status of Melaleuca and Eucalyptus species. Soil Science and Plant Nutrition 49: 99-109.
Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant 3:973-996.
Ogawa A, Ando F, Toyofuku K, Kawashima C (2009) Sucrose metabolism for the development of seminal root in maize seedlings. Plant Production Science 12:9-16.
Okawa S, Makino A, Mae T (2003) Effect of irradiance on the partitioning of assimilated carbon during the early phase of grain filling of rice. Annals of Botany 92:357-364.
Ono K, Terashima I, Watanabe A (1996) Interaction between nitrogen deficit of a plant and nitrogen content in the old leaves. Plant and Cell Physiology 37:1083-1089.
Pan J, Cui K, Wei D, Huang J, Xiang J, Nie L (2011) Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiologia Plantarum 141:321-331.
Paponov IA, Engels C (2005) Effect of nitrogen supply on carbon and nitrogen partitioning after flowering in maize. Journal of Plant Nutrition and Soil Science 168:447-453.
Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance. Plant, Cell and Environment 20:110-116.
Payyavula RS, Tay KH, Tsai CJ, Harding SA (2011) The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. The Plant Journal 65:757-770.
Peng M, Bi YM, Zhu T, Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Molecular Biology 65:775-797.
Prestridge DS (1991) SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. Computer Applications in the Biosciences 7;203-206.
Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. The EMBO Journal 11:4705-4713.
Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. The Plant Cell Supplement 14:S185-S205.
Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in Plants: conserved and novel mechanisms. The Annual Review of Plant Biology 57:675-709.
Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. The Plant Journal 24:703-711.
Sakakibara H (2003) Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. Journal of Plant Research 116:253-257.
Sakakibara H, Hayakawa A, Deji A, Gawronski SW, Sugiyama T (1999) His-Asp phosphotransfer possibly involved in the nitrogen signal transduction mediated by cytokinin in maize:molecular cloning of cDNAs for two-component regulatory factors and demonstration of phosphotransfer activity in vitro. Plant Molecular Biology 41:563-573.
Sakakibara H, Taniguchi M, Suguyama T (2000) His-Asp phosphorelay signaling: a communication avenue between plants and their environment. Plant Molecular Biology 42:273-278.
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136:2483-2499.
Schofield RA, Bi YM, Kant S, Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant, Cell & Environment 32:271-285.
Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CL, Furbank RT (2007a) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. Journal of Experimental Botany 58:483-495.
Scofield GN, Hirose T, Aoki N, Furbank RT (2007b) Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. Journal of Experimental Botany 58:3155-3169.
Scofield GN, Hirose T, Gaudron JA, Furbank RT, Upadhyaya NM, Ohsugi R (2002). Antisense suppression of the rice transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Functional Plant Biology 29:815-826.
Shin DH, Choi MG, Lee HK, Cho M, Choi SB, Choi G, Park YI (2013) Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochemical and Biophysical Research Communications 430:634-639.
Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CP, Perroux JM, Ward JM (2007) Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiology 143: 188-198.
Sobkowiak R, Deckert J (2003) Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiology and Biochemistry 41:767-772.
Song C, Zeng F, Feibo W, Ma W, Zhang G (2011) Proteomic analysis of nitrogen stress-responsive proteins in two rice cultivars differing in N utilization efficiency. Journal of Integrated OMICS 1:78-87.
Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell 15:2076-2092.
Sun Y, Reinders A, LaFleur KR, Mori T,Ward JM (2010) Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. Plant and Cell Physiology 51:114-122.
Tahir ISA, Nakata N (2005) Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. Journal of Agronomy and Crop Science 191:106-115.
Takeda T, Toyofuku K, Matsukura C, Yamaguchi J (2001) Sugar transporters involved in flowering and grain development of rice. Journal of Plant Physiology 158:465-470.
Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ (2012) Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology 158:1666-1684.
Wang C, Tillberg JE (1996) Effects of nitrogen deficiency on accumulation of fructan and fructan metabolizing enzyme activities in sink and source leaves of barley (Hordeum vulgare). Physiologia Plantarum 97:339-345.
Wang R, Guan P, Chen M, Xing X, Zhang Y, Crawford NM (2010) Multiple regulatory elements in the Arabidopsis NIA1 promoter act synergistically to form a nitrate enhancer. Plant Physiology 154:423-432.
Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39:971-974.
Xiao W, Sheen J, Jang CJ (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Molecular Biology 44:451-461.
Yang J, Zhang J (2006) Grain filling of cereals under soil drying. The New Phytologist 169:223-236.
Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Remobilization of carbon reverses in response to water deficit during grain filling of rice. Field Crop Research 71:47-55.
Yoshida S (1972) Physiological aspects of grain yield. Annual Review of Plant Biology 23:437-464.
Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute 46-49.
Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiology 121:687-693.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58424-
dc.description.abstract碳水化合物的累積及運輸效能是決定作物產量的重要因素,目前已有研究指出低氮素或缺氮逆境會促進碳水化合物移往積儲組織及地下部。蔗糖為植物體中醣類運輸的主要形式,而蔗糖轉運蛋白 (sucrose transporter, SUT) 則為調控蔗糖進出韌皮部的主要蛋白質。本研究利用水稻 (Oryza sativa L. cv. Tainung 67) 懸浮細胞系統探討培養液中蔗糖、銨態氮及硝酸態氮含量改變對水稻蔗糖轉運蛋白基因家族成員OsSUT1、2、4及5表現之影響。研究結果顯示缺糖處理之下,細胞生長速度及細胞活力會極顯著下降,而OsSUT2、4及5的基因表現也隨之降低,但OsSUT1之基因表現則顯著誘導上升。在供糖處理之下,OsSUT2及4基因表現會受缺氮誘導,而此誘導現象於恢復供氮6小時後即消失,且銨態氮 (NH4+-N) 之效應較硝酸態氮 (NO3--N) 顯著。另一方面,OsSUT5之基因表現則受缺氮刺激所抑制,但於恢復供氮2天後可使OsSUT5基因表現回復,且NO3--N之效應較NH4+-N顯著。分析帶有不同OsSUT4啟動子長度片段接GUS報導基因之轉殖水稻懸浮細胞,發現OsSUT4啟動子上受缺氮調控之cis-acting elements位置可能位於OsSUT4轉譯起始點至上游434 bp間。zh_TW
dc.description.abstractAccumulation and transport of carbohydrates are important for crop yield. Sucrose is the major sugar for long-distance translocation within plant tissue through phloem. Studies have suggested that nitrogen deficiency promotes translocation of non-structural carbohydrates to sink tissues in plants. Sucrose transporters (SUTs) play important roles in sucrose loading into phloem. In this study, effects of carbon and nitrogen nutrients on OsSUTs gene expressions in rice (Oryza sativa L.) suspension cells were investigated. The results showed that sucrose starvation significantly reduced cell growth rate and cell viability. Sucrose starvation also reduced OsSUT2, 4 and 5 expressions, but OsSUT1 gene expression was significantly induced in sucrose-starvated cells. In sucrose supplying condition, nitrogen starvation induced OsSUT2 and 4 gene expressions, and the effect was suppressed after 6 hours of nitrogen recovery treatment. The effect of nitrogen recovery treatment with ammonium (NH4+-N) on OsSUT2 and 4 gene expressions was more significant than that was treated with nitrate (NO3--N). On the other hand, OsSUT5 gene expression was inhibited under nitrogen starvation, but after nitrogen re-supplied for 2 days, OsSUT5 gene expression was increased to a level equivalent to control. Moreover, the NO3--N effect on OsSUT5 expression was more significant than NH4+-N. Based on OsSUT4 promoter activity analysis in transgenic rice suspension cells, it was suggested that the cis-acting elements related to nitrogen-starvation response were located at the region within 434 bp upstream of the translation start codon.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:14:40Z (GMT). No. of bitstreams: 1
ntu-103-R00621114-1.pdf: 3085374 bytes, checksum: 238cfbf0cef703ae010ac9eec6ce4e73 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝………………………………………………………………………………………i
中文摘要………………………………………………………………………………ii
Abstract……………………………………………………………………………iii
目錄…………………………………………………………………………………v
表目錄…………………………………………………………………………………ix
圖目錄………………………………………………………………………………ix
附表及附圖目錄………………………………………………………………………x
縮寫字對照……………………………………………………………………………xi
前言…………….………………………………………………………………………1
1. 碳、氮兩大元素於植物體中之交互作用……………………………………1
2. 水稻對氮營養元素缺乏之反應及應對策略…………………………………2
3. 氮源變化對醣類分配之影響………………………………………………3
4. 醣類轉運蛋白於低氮逆境下扮演之角色……………………………………4
5. 水稻蔗糖轉運蛋白之功能及分類…………………………………………5
6. 碳、氮之訊息傳遞途徑……………………………………………………8
7. 與碳、氮調控相關之cis-acting element………………………………………9
8. 本論文之研究主題……………………………………………………………9
材料與方法…………………………………………………………………………11
1. 實驗材料……………………………………………………………………11
2. 水稻懸浮細胞系的建立……………………………………………………11
2.1 水稻癒傷組織 (callus) 的誘導………………………………………11
2.2 建立水稻懸浮細胞系…………………………………………………11
3. 材料處理……………………………………………………………………12
實驗一、水稻懸浮細胞於不同蔗糖濃度下進行缺氮處理…………………12
實驗二、水稻懸浮細胞於不同蔗糖濃度下缺氮後進行不同濃度及型態之短期恢復供氮處理………………………………………………12
實驗三、水稻懸浮細胞於缺氮後進行不同濃度及時間之恢復供氮處理.…………………………………………………………………12
實驗四、水稻懸浮細胞於缺氮後進行不同濃度及型態之長期恢復供氮處理.…………………………………………………………………13
實驗五、提升培養基醣類濃度處理.………………………………………13
實驗六、轉殖水稻懸浮細胞之缺氮處理…………………………………13
4. 細胞沉降體積 (sedimented cell volume) 測量……………………………13
5. 細胞活力檢.………………………………………………………14
5.1 Evans blue染色分析………………………………………………14
5.2 TTC染色分析…………………………………………………………14
6. 總可溶性醣類含量測定……………………………………………………14
7. 葡萄糖及蔗糖含量測定……………………………………………………15
7.1 可溶性醣類萃取………………………………………………………15
7.2 葡萄糖含量測定………………………………………………………15
7.3 蔗糖含量測定………………………………………………………16
8. 蛋白質含量測定………………………………………………………17
9. 銨態氮含量測定………………………………………………………17
10. 硝酸態氮含量測定………………………………………………………18
11. 基因表現分析……………………………………………………………………18
11.1 總RNA萃取…………………………………………………………………18
11.2 TURBO DNase 處理……………………………………………………19
11.3 RNA電泳…………………………………………………………………19
11.4 即時反轉錄聚合酶連鎖反應 (real-time RT-PCR)……………19
12. 轉殖水稻懸浮細胞GUS活性定量分析…………………………………20
12.1 蛋白質萃取………………………………………………………………………………20
12.2 蛋白質定量……………………………………………………………………………20
12.3 GUS活性測定…………………………………………………………………20
結果…………………………………………………………………………………………22
1. 不同蔗糖濃度培養下,缺氮處理對水稻懸浮細胞之生長、活力、碳氮含量、以及OsSUTs基因表現之影響…………………………………………22
1.1 不同蔗糖濃度培養下,缺氮處理對水稻懸浮細胞生長速率的影響………………………………………………………………………22
1.2 水稻懸浮細胞活力變化…………………………………………22
1.3 水稻懸浮細胞及培養基內之碳氮含量變化……………………………23
1.4 水稻懸浮細胞OsSUTs基因表現變化………………………………………25
2. 不同蔗糖濃度下,短期恢復供氮處理對水稻懸浮細胞OsSUTs基因表現之影響…………………………………………………………………………………………25
3. 長期恢復供氮處理對水稻懸浮細胞OsSUT5基因表現之影響……………26
3.1 水稻懸浮細胞OsSUT5基因表現受恢復供應混合氮之濃度與時間影響………………………………………………………………………………26
3.2 恢復供應單一型態氮對水稻懸浮細胞OsSUT5基因表現之影響………………………………………………………………………………26
4. 懸浮細胞內葡萄糖含量對OsSUTs基因表現之影響……………………………27
5. 不同蔗糖濃度培養下,缺氮處理對水稻懸浮細胞之OsRR6基因表現之影響……………………….....................………………………………………28
6. 缺氮處理對OsSUT4啟動子片段之調控……………………………………28
討論……………………………………………………………………………………29
1. 碳、氮營養源影響OsSUTs基因表現之可能調控機制………………………29
2. OsSUTs受醣類、氮、細胞分裂素、以及離層酸調控之啟動子區域探討………………………………………………………………………………………………………………………………30
3. OsSUTs於水稻懸浮細胞面臨缺氮時可能扮演之角色………………………32
4. OsSUTs於水稻幼苗面臨缺氮時可能扮演之角色……………………………33
5. 比較以水稻懸浮細胞系統或水稻幼苗探討基因調控之異同………………34
6. 結語與未來展望………………………………………………………………35
參考文獻……………………………………………………………………………………47
dc.language.isozh-TW
dc.subject水稻zh_TW
dc.subject蔗糖轉運蛋白zh_TW
dc.subject懸浮細胞zh_TW
dc.subject缺氮zh_TW
dc.subject啟動子zh_TW
dc.subjectrice (Oryza sativa L.)en
dc.subjectpromoteren
dc.subjectnitrogen starvationen
dc.subjectsucrose transporteren
dc.subjectsuspension cellsen
dc.title碳/氮營養源對水稻懸浮細胞蔗糖轉運蛋白基因表現之調控zh_TW
dc.titleRegulation of Sucrose Transporter Gene Expressions by Carbon/Nitrogen Sources in Rice Cultured Cellsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee洪傳揚(Chwan-Yang, Hong),張孟基(Men-Chi, Chang),陳仁治(Jen-Chih, Chen),林淑怡(Shu-I, Lin)
dc.subject.keyword水稻,蔗糖轉運蛋白,懸浮細胞,缺氮,啟動子,zh_TW
dc.subject.keywordrice (Oryza sativa L.),sucrose transporter,suspension cells,nitrogen starvation,promoter,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2014-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved