Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58392
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭士康(Shyh-Kang Jeng)
dc.contributor.authorHsuan-Ju Tsaien
dc.contributor.author蔡炫儒zh_TW
dc.date.accessioned2021-06-16T08:13:34Z-
dc.date.available2017-03-09
dc.date.copyright2014-03-09
dc.date.issued2014
dc.date.submitted2014-02-13
dc.identifier.citation[1] M. Sherman, A. N. Mody, R. Martinez, and C. Rodriguez, “IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence,” IEEE Commun. Mag., vol. 46, no. 7, pp. 72-79, July 2008.
[2] B. Perlman, J. Laskar, and K. Lim, “Fine-tuning commercial and military radio design,” IEEE Microw. Mag., vol. 9, no. 4, pp. 95-106, Aug. 2008.
[3] G. M. Rebeiz, RF MEMS Theory, Design, and Technology. New York, USA: Wiley, 2003.
[4] J.-S. Fu and A. Mortazawi, “Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3239-3244, Dec. 2008.
[5] H. M. Nemati, C. Fager, U. Gustavsson, R. Jos, and H. Zirath, “Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1110-1118, May 2009.
[6] M.-I. Lai, T.-Y. Wu, J.-C. Hsieh, C.-H. Wang, and S.-K. Jeng, “Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices,” IET Microw., Antennas and Propaga., vol. 3, no. 1, pp. 47-54, Feb. 2009.
[7] I. C. Hunter and J. D. Rhodes, “Electronically tunable microwave bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. MTT-30, no. 9, pp. 1354-1360, Sep. 1982.
[8] W.-D. Yan and R. R. Mansour, “Tunable dielectric resonator bandpass filter with embedded MEMS tuning elements,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 154-160, Jan. 2007.
[9] S. Yonghyun, W. Zhengzheng, and M. Rais-Zadeh, “A high-performance continuously tunable mems bandpass filter at 1 GHz,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2439-2447, Aug. 2012.
[10] J. Nath, D. Ghosh, J. P. Maria, A. I. Kingon, W. Fathelbab, P. D. Franzon, and M. B. Steer, “An electronically tunable microstrip bandpass filter using thin-film barium-strontium-titante (BST) varactors,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2707-2712, Sep. 2005.
[11] H. Jiang, B. Lacroix, K. Choi, Y. Wang, A. T. Hunt, and J. Papapolymerou, “Ka- and U-band tunable bandpass filters using ferroelectric capacitors,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3068-3074, Dec. 2011.
[12] L. H. Hsieh and K. Chang, “Tunable microstrip bandpass filters with two transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 520-525, Feb. 2003.
[13] T.-Y. Yun and K. Chang, “Piezoelectric-transducer-controlled tunable microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1303-1310, MAY 2002.
[14] C. Lugo and J. Papapolymerou, “Dual-mode reconfigurable filter with asym- metrical transmission zeros and center frequency control,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 499-501, Sep. 2006.
[15] P. W. Wong and I. C. Hunter, “Electronically tunable filters,” IEEE Microw. Mag., vol. 10, no. 6, pp. 46-54, Oct. 2009.
[16] W.-H. Tu, “Compact low-loss reconfigurable bandpass filter with switchable bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 208-210, April 2010.
[17] C. H. Kim and K. Chang, “Ring resonator bandpass filter with switchable bandwidth using stepped-impedance stubs,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3936-3944, Dec. 2010.
[18] A. Miller and J.-S. Hong, “Cascaded coupled line filter with reconfigurable bandwidths using LCP multilayer circuit technology,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1577-1586, June 2012.
[19] H.-J. Tsai, N.-W. Chen, and S.-K. Jeng, “Reconfigurable bandpass filter with separately relocatable passband edge,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 11, pp. 559-561, Nov. 2012.
[20] X.-G. Wang, X.-H. Cho, and S.-W. Yun, “A tunable combline bandpass filter loaded with series resonator,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1569-1576, June 2012.
[21] E. E. Djoumessi, M. Chaker, and Ke Wu, “Varactor-tuned dual-mode bandpass filter for wireless applications, in IEEE Radio and Wireless Symp., San Diego, USA, Jan. 18-22, 2009, pp. 646-649.
[22] W. Tang and J.-S. Hong, “Varactor-tuned dual-mode bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2213-2219, Aug. 2010.
[23] S.-J. Park and G. M. Rebeiz, “Low-loss two-pole tunable filters with three different predefined bandwidth characteristics, IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1137-1148, May 2008.
[24] X. Y. Zhang, Q. Xue, C. H. Chan, and B.-J. Hu, “Low-loss frequency-agile bandpass filters with controllable bandwidth and suppressed second harmonic, IEEE Trans. Microw. Theory Tech., vol. 58, no. 6, pp. 1557-1564, June 2010.
[25] M. A. El-Tanani and G. M. Reibez, “A two-pole two-zero tunable filter with improved linearity,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 830-839, April 2009.
[26] M. S’anchez-Renedo, R. G’omez-Garc’ıa, J. I. Alonso, and C. Briso-Rodr’ıguez, “Tunable combline filter with continuous control of center frequency and bandwidth,” IEEE Trans. Micro. Theory Tech., vol. 53, no. 1, pp. 191-199, Jan. 2005.
[27] Y.-C. Chiou and G. M. Reibez, “A tunable three-pole 1.5-2.2-GHz bandpass filter with bandwidth and transmission zero control,” IEEE Trans. Micro. Theory Tech., vol. 59, no. 11, pp. 2872-2878, Nov. 2011.
[28] H.-I. Baek, Y.-H. Cho, X.-G. Wang, H.-M. Lee, and S.-W. Yun, “Design of a reconfigurable active bandpass filter based on a controllable slope parameter,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 670-672, Dec. 2011.
[29] A. L. C. Serrano, F. S. Correra, T.-P. Vuong, and P. Ferrari, “Synthesis methodology applied to a tunable patch filter with independent frequency and bandwidth control,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 484-493, March 2012.
[30] M.-F. Lei and H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 861-867, March 2005.
[31] T. S. Beukman and R. H. Geschke, “A tune-all wideband filter based on perturbed ring-resonators,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 3, pp. 131-133, March 2013.
[32] R. Fu, “Low loss and high tuning Barium Strontium Titanate (BST) thin films” in IEEE Semiconductor Device Research Symposium (ISDRS), College Park, MD, USA, Dec. 7-9, 2011, pp. 1-2.
[33] G. A. Wang and B. Pan, Passive RF Component Technology: Materials, Techniques, and Applications. Norwood, MA, Artech House, Inc., 2012.
[34] D. J. Jung, J. N. Hansen, and K. Chang, “Piezoelectric transducer-controlled tunable hairpin bandpass filter,” IEEE Electron. Lett., vol. 48, no. 2, pp. 440-441, Apr. 2012.
[35] K. Entesari and G. M. Reibez, “RF MEMS, BST, and GaAs varactor system-level response in complex modulation systems,” Int. Journal RF and Microwave Comp. Aid. Eng., doi: 10.1002/mmce.20275, pp. 86-98, 2007.
[36] Y.-C. Chiou and G. M. Rebeiz, “Tunable 1.55-2.1 GHz 4-pole elliptic bandpass filter with bandwidth control and > 50 dB rejection for wireless systems,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 117-124, Jan. 2013.
[37] J.-S. Hong, “Reconfigurable planar filters,” IEEE Microw. Mag., vol. 10, no. 6, pp. 75-83, Oct. 2009.
[38] I. Wolff, “Microstrip bandpass filter using degenrate modes of a microstrip ring resonator,” Electron. Lett., vol. 8, no. 12, pp. 302-303, 1972.
[39] M. Guglielmi and G. Gatti, “Experimental investigation of dual-mode microstrip ring resonators” in 20th Eur. Microw. Conf., 1990, pp. 901-906.
[40] X.-G. Huang, Q.-Y. Feng, and Q.-Y. Xiang, “Bandpass filter with tunable bandwidth using quadruple-mode stub-loaded resonator,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 176-178, April 2012.
[41] C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 573-577, Feb. 2003.
[42] C. Lugo and J. Papapolymerou, “Single switch reconfigurable bandpass filter with variable bandwidth using a dual-mode triangular patch resonator,” in IEEE MTT-S Int. Dig., California USA, June 12-17, 2005, pp. 779-782.
[43] Y.-H. Chun and J.-S. Hong, “Electronically reconfigurable dual-mode microstrip open-loop resonator filter,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 449-451, July 2008.
[44] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
[45] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance- Matching Networks, and Coupling Structure, Artech House, Norwood, MA, 1980.
[46] G. L. Matthaei, “Narrow-band, fixed-tuned, and tunable bandpass filters with zig–zag hairpin–comb resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1214-1219, April 2003.
[47] K. Entesari and G. M. Rebeiz, “A differential 4-bit 6.5–10-GHz RF MEMS tunable filter,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1103-1110, March 2005.
[48] A. R. Brown and G. M. Rebeiz, “A varactor-tuned RF filter,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 7, pp. 1157–1160, Jul. 2000.
[49] G. Torregrosa-Penalva, G. Lopez-Risueno, and J. I. Alonso, “A simple method to design wide-band electronically tunable combline filters,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 172–177, Jan. 2002.
[50] J.-Y. Chen, H.-J. Tsai, and N.-W. Chen, “Bandwidth reconfigurable microwave bandpass filter,” in IEEE MTT-S Int. Microw. Symp. Dig. Baltimore, USA, June 5-10, 2011, pp.1-4.
[51] J. Lee and K. Sarabandi, “An analytic design method for microstrip tunable filters,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 7, pp. 1699–1706, Jul. 2008.
[52] B. W. Kim and S. W. Yun, “Varactor-tuned combline bandpass filter using step- impedance microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1279–1283, Apr. 2004.
[53] M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application. Berlin, Germany: Springer-Verlag, 2000.
[54] B. T. Tan, S. T. Chew, M. S. Leong, and B. L. Ooi, “A dual-mode bandpass filter with enhanced capacitive perturbation,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 8, pp. 1906-1910, Aug. 2003.
[55] A. L. C. Serrano, F. S. Correra, T.-P. Vuong, and P. Ferrari, “Analysis of a reconfigurable bandpass circular patch filter,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3918-3924, Dec. 2010.
[56] J.-R. Mao, W.-W. Choi, K.-W. Tam, W. Q. Che, and Q. Xue, “Tunable bandpass filter design based on external quality factor tuning and multiple mode resonators for wideband applications,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2574-2584, July 2013.
[57] “Silicon abrupt junction varactors,” Skyworks Solutions Inc., Santa Clara, CA, USA, Data Sheet SMV1405-SMV1430 Series: Plastic Packaged Abrupt Junction Tuning Varactors, Mar. 2013.
[58] “Silicon abrupt junction varactors,” Skyworks Solutions Inc., Santa Clara, CA, USA, Data Sheet SMV1231-SMV1237: Hyperabrupt Tuning Varactors, Jun. 2012.
[59] “Silicon abrupt junction varactors,” Skyworks Solutions Inc., Santa Clara, CA, USA, Data Sheet SMV1247-SMV1255: Hyperabrupt Tuning Varactors, Feb. 2010.
[60] L.-K. Yeung, K.-L. Wu, and Y.-E. Wang, “Low-temperature cofired ceramic LC filters for RF applications,” IEEE Microw. Mag., vol. 9, no. 5, pp. 118-128, Oct. 2008.
[61] C.-H. Wang, Y.-S. Lin, and C.-H. Chen, 'Novel inductance-incorporated microstrip coupled-line bandpass filters with two attenuation poles,' in IEEE MTT-S Int. Microw. Symp. Dig., Fort Worth, Texas, USA, June 5-12, 2004, pp. 1979-1982.
[62] L. Athukorala and D. Budimir, “Compact second-order highly linear varactor- tuned dual-mode filters with constant bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 9, pp. 2214-2220, Sep. 2011.
[63] P. Blondy and D. Peroulis, “Handling RF power: the latest advances in RF-MEMS tunable filters,” IEEE Microw. Mag., vol. 14, no. 1, pp. 24-38, Feb. 2013.
[64] M. A. Sanchez-Soriano, R. Gomez-Garcia, G. Torregrosa-Penalva, and E. Bronchalo, “Reconfigurable-bandwidth bandpass filter within 10-50%,” IET Microw., Antennas and Propaga., vol. 7, no. 7, pp. 502-509, July 2013.
[65] C. Huang, K. Buisman, L. K. Nanver, F. Sarubbi, M. Popadi’c, T. L. M. Scholtes, H. Schellevis, L. E. Larson, and L. C. N. de Vreede, “A 67 dBm OIP3 multistacked junction varactor,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 749-751, Nov. 2008.
[66] Y.-C. Chiou and G. M. Rebeiz, “A quasi elliptic function 1.75-2.25 GHz 3-pole bandpass filter with bandwidth control,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 2, pp. 244-249, Feb. 2012.
[67] S.-F. Chao, C.-H. Wu, Z.-M. Tsai, H. Wang, and C.-H. Chen, “Electronically switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4193-4201, Dec 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58392-
dc.description.abstract本論文目標為研發新式壓控電容調制之可重構式帶通濾波器,藉由調整壓控電容之對應電容,能在更大範圍內控制中心頻率或通帶頻寬,並可於微波及射頻通訊應用中多功能操作。為達成此一目標,本研究提出兩種新式設計方案:第一種設計方案以兩組串聯形式之共振殘段電路與一組並聯形式之壓控共振電路串接,藉著恰當調整壓控共振電路之高低通帶兩側,有效縮放合成頻寬,並可進一步使用串聯電路之反共振特性,壓抑並聯壓控電路產生之諧波。第二個設計方案則在各共振器間引入可調制之耦合係數,並於輸入與輸出端加入可調整外部品質因數之壓控式阻抗轉換器,以同時達到阻抗匹配,有效解決過去使用固定式阻抗轉換器之重構式帶通濾波器共有的輸入端與輸出端阻抗不匹配問題。兩種新式設計方案均可用以協助設計可重構式帶通濾波器之雛形。
藉助此二新式設計方案,本研究實現了四種不同的重構式帶通濾波器。第一個設計採用第一種設計方案,依循較簡單傳統的設計方法,設計並實作出可重構式帶通濾波器。量測到的介入損失低於2 分貝,於高低頻通帶兩側分別擁有21.8%及18.2%的調制能力,並可有效壓抑其通帶諧波至5.5 GHz。第二個設計以準集總元件實作出略有改變的新建構單元,同樣使用一般設計方法,完成一個輕巧,於1 GHz 擁有相當大通帶變化比例(五比一)的頻寬可調式微帶線帶通濾波器。同時,藉由恰當控制電路中的混合電磁耦合係數,可輕易控制相對比例頻寬。另外,採用可調制的阻抗轉換器,使頻寬變化過程中仍能達成輸出端及輸入端之阻抗匹配。第三個設計提出一個具有可切換高低側傳輸零點、擁有高頻率及高頻寬調整性之可重構式雙模帶通濾波器。藉由簡單的T 型微帶線結構與壓控電容調制,應用略有修改的第二式設計方案導入濾波器雛型,並使用疊代方式合成所需頻率響應。不論傳輸零點位於通帶之高側或低側,實作完成之電路的1 分貝頻寬於中心頻率750 至1240 MHz 中均可達到50 至175 MHz 的頻寬變化,並保有2.9 分貝以下之介入損失。
最後,同時以略有修改之第二種設計方案及疊代方法為基礎,使用壓控電容分別調整環狀雙模共振器之奇偶模共振頻率,實現中心頻率及通帶頻寬均能控制之濾波器。藉著簡單的分析雛形與量測驗證,所設計的可重構式帶通濾波器具有33%之中心頻率調整比例、優良的頻寬變化率,以及多樣式的通帶重構型式,例如典型巴特沃斯(Butterworth)、柴比雪夫(Chebyshev),甚至全拒(all-rejected)式等的響應特性。
zh_TW
dc.description.abstractThis dissertation aims to design novel varactor-tuned reconfigurable microstrip bandpass filters (BPFs) that are capable of being adjusted to different center frequencies or passband widths for multi-functional operations in microwave and radio frequency communication systems. To achieve this goal, we propose two novel design schemes: The first design scheme is a conceptual structure. It consists of a cascade of two series stub-based structures in shunt with a varactor-tuned microwave resonators to adjust the bandwidth, and realizing passband edges tunabilities. The second design scheme is developed by including a tunable coupling coefficient for inter-resonator coupling tuning as well as a pair of controllable immittance inverters at the I/O ports for an external quality factor. Hence, this scheme can be modified slightly according to the design specification, but its general flow is kept. The two novel design schemes can facilitate shaping prototypes, and guide the design of reconfigurable BPFs. By applying these novel design schemes when necessary, we designed four reconfigurable BPFs with advanced responses: The first design applies the former design scheme along with a simple ordinary procedure to design and fabricate a BPF with a low passband insertion loss less than 2 dB, a 21.8 % higher band edge tuning range, a 18.2 % lower band edge tuning range, as well as wideband suppression greater than 17 dB at frequencies up to 5.5 GHz. The second design adopts a quasi-lumped circuit topology and a varactor-based mixed electric and magnetic coupling mechanism, in which the second design scheme is used in designing a prototype. The BPF implemented for demonstration is a compact microstrip BPF of a very high passband bandwidth tuning ratio (5-to-1 ratio) centered at 1 GHz. The third design chooses a simple T-shaped dual-mode resonator which is developed according to a slight modification on the second design scheme and is externally coupled and perturbed with varactor diodes. In addition, an iterative procedure corresponding to this modified scheme is also presented to guide the design. The implemented BPF has a 1-dB bandwidth adjustable from 55 to 175 MHz for center frequency ranging from 750 to 1240 MHz with a low insertion loss less than 2.9 dB. The final design uses a simple loop-shaped dual-mode resonator tapped and perturbed with varactor diodes, in which the modified second design scheme and the proposed iterative procedure are also exploited in developing the BPF design. The fabricated microwave BPF is with an up to 33% center frequency tuning range, an excellent bandwidth tuning capability, as well as a freedom to change the filter response, such as the ordinary Butterworth, Chebyshev, and all-reject specifications.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:13:34Z (GMT). No. of bitstreams: 1
ntu-103-D99942003-1.pdf: 4214394 bytes, checksum: 83d1a79b11ab2d686b5dd4f932225f34 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAbstract i
摘要 iii
Table of Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 5
1.3 Contributions 8
1.4 Thesis Outline 9
Chapter 2 Theoretical Background and Proposed Design Schemes 11
2.1 Insertion Loss Method Applied to BPF Transformation 11
2.2 BPF Synthesis Using Immittance Inverters 14
2.3 Tunable Resonators 19
2.4 Varactor Modeling and Extraction of Parameters 24
2.5 Proposed Design Schemes 27
2.6 Chapter Summary 29
Chapter 3 A Reconfigurable Bandpass Filter with Separately Relocatable Passband Edge 31
3.1 Design Principle and Procedure 31
3.2 Results and Discussions 35
3.3 Chapter Summary 44
Chapter 4 A Varactor-based, Quasi-lumped Reconfigurable Bandpass Filter with High Bandwidth Tunability 45
4.1 Design Principle and Procedure 45
4.2 Results and Discussion 51
4.3 Chapter Summary 56
Chapter 5 A Reconfigurable Bandpass Filter Based on a Varactor-Perturbed, T- Shaped Dual-Mode Resonator 58
5.1 Design Principle and Procedure 58
5.2 Results and Discussions 62
5.3 Chapter Summary 69
Chapter 6 Center Frequency and Bandwidth Controllable Microstrip Bandpass Filter Design Using Loop-Shaped Dual-Mode Resonator 70
6.1 Design Principle 71
6.2 Filter Design and Realization 86
6.3 Center Frequency Tuning and BW Adjustment 89
6.4 Filter Response Reconfigurability 92
6.5 All-reject Operation 94
6.6 Filter Nonlinearity, Power Handling, and Noise Figure 95
6.7 Theoretical Extension for Higher Order Reconfigurable Filter Synthesis 98
6.8 Chapter Summary 100
Chapter 7 Conclusions 101
References 103
Publication List of Hsuan-Ju Tsai (since May 2010) 113
Journal articles 113
Conference papers 114
Patents 116
dc.language.isoen
dc.subject變容二極體zh_TW
dc.subject帶通濾波器zh_TW
dc.subject可調式濾波器zh_TW
dc.subjectvaractor diodeen
dc.subjectBandpass filteren
dc.subjectreconfigurable filteren
dc.title使用新穎式設計架構之壓控電容可調式帶通濾波器設計zh_TW
dc.titleVaractor-Tuned Reconfigurable Bandpass Filter Designs Using New Design Architecturesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.coadvisor陳念偉(Nan-Wei Chen)
dc.contributor.oralexamcommittee?文化(Wen-Hua Tu),陳士元(Shih-Yuan Chen),許恆通,廖文聘
dc.subject.keyword帶通濾波器,可調式濾波器,變容二極體,zh_TW
dc.subject.keywordBandpass filter,reconfigurable filter,varactor diode,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2014-02-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved